Министерство образования и науки Российской Федерации Омский государственный технический университет

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНТЕГРАЛЬНОМУ ИСЧИСЛЕНИЮ

Для студентов заочного отделения экономических специальностей.

Составители: Фирдман Александр Исаевич, доцент Батехина Наталья Викторовна, доцент

Печатается по решению Редакционно-издательского совета Омского государственного технического университета

Редактор Г. М. Кляут ИД 06039 от 12.10.01 Сводный темплан 2004г. Подписано в печать 05.04.04 . Бумага офсетная. Формат 60х84/16 Отпечатано на дупликаторе. Усл. печ. л. 4,0 Уч.-изд. л. 4,0 Тираж 100 экз. Заказ 303

Издательство ОмГТУ. 644050, Омск, пр-т Мира, 11 Типография ОмГТУ

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Функция F(x) называется первообр ой функции f(x), если F'(x) = f(x). Так, для функции $f(x) = x^2$ первообразном будет функция $F(x) = x^3/3$, так как

$$\left(\frac{x^3}{3}\right)' = x^2$$
. Но первообразными будут также функции $\frac{x^3}{3} + 1, \frac{x^3}{3} - 5, ..., \frac{x^3}{3} + C$,

так как производные от этих функций совпадают с x². Таким образом, если функция f(x) имеет первообразную F(x), то она имеет бесконечно много первообразных вида F(x) + C, где C = const. Множество всех первообразных для f(x) иначе называется неопределенным интегралом от функции f(x) и обозначается символом $\int f(x)dx$. Итак, $\int f(x)dx = F(x) + C$. Например,

$$\int x^2 dx = \frac{x^3}{3} + C, \int \sin x \, dx = -\cos x + C, \int e^x dx = e^x + C, \int \frac{dx}{x} = \ln|x| + C.$$

Теорема существования: всякая непрерывная в промежутке [а, в] функция f(x) имеет на этом промежутке первообразную F(x).

Свойства неопределенного интеграла

1.
$$(\int f(x)dx)^{1} = f(x)$$
.

$$2. \int df(x) = f(x) + C$$

1.
$$(\int f(x)dx)^{1} = f(x)$$
. 2. $\int df(x) = f(x) + C$. 3. $d[\int f(x)dx] = f(x)dx$.

4.
$$\int c \cdot f(x) dx = c \int f(x) dx$$
, $c = const$

$$4. \int c \cdot f(x) dx = c \int f(x) dx, \quad c = const. \qquad 5. \int \left[f(x) + \varphi(x) \right] dx = \int f(x) dx + \int \varphi(x) dx.$$

Таблица неопределенных интегралов

1.
$$\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C, \ (\alpha \neq -1).$$

$$5. \int \frac{du}{\cos^2 u} = tgu + C.$$

$$2. \int \frac{\mathrm{d}\mathbf{u}}{\mathbf{u}} = \ln|\mathbf{u}| + C.$$

6.
$$\int \frac{du}{\sin^2 u} = -\operatorname{ctg} u + C.$$

3.
$$\int a^{\alpha} du = \frac{a^{u}}{\ln a} + C.$$

7.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C.$$

$$4. \quad \int e^u du = e^u + C.$$

8.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C.$$

9.
$$\int \sin u \, du = -\cos u + C$$
. 11. $\int \frac{du}{\sqrt{u^2 + a^2}} = \ln \left| u + \sqrt{u^2 \pm a^2} \right| + C$.

10.
$$\int \cos u du = \sin u + C$$
. 12. $\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C$.

Фактически 10 первых табличных интегралов могут быть получены из таблицы производных, читаемой справа налево. Здесь и может быть как независимой переменной, так и дифференцируемой функцией от х: u = u(x), C – произвольное число.

Кроме этих 12 интегралов желательно знать наизусть несколько легко вычисляемых интегралов.

1.
$$\int du = u + C$$
. 4. $\int ctg \, u \, du = \ln |\sin u| + C$.

2.
$$\int \frac{du}{\sqrt{u}} = 2\sqrt{u} + C.$$
 5.
$$\int \frac{du}{\sin u} = \ln \left| tg \frac{u}{2} \right| + C.$$

3.
$$\int tgu du = -\ln \left| \cos u \right| + C$$
. 6. $\int \frac{du}{\cos u} = \ln \left| tg \left(\frac{u}{2} + \frac{\pi}{4} \right) \right| + C$.

При вычислении интегралов они сводятся к одному или нескольким табличным с помощью методов интегрирования. При этом произвольная постоянная ставится после последнего взятого интеграла.

Методы и приемы интегрирования

Один из наиболее часто используемых приемов интегрирования основан на следующем замечании: переменная и в таблице интегралов может быть как независимой, так и являться функцией аргумента x: u = u(x).

Примеры

1.
$$\int \frac{x dx}{\sqrt{9 - x^4}} = \frac{1}{2} \int \frac{d(x^2)}{\sqrt{3^2 - (x^2)^2}} = \frac{1}{2} \arcsin \frac{x^2}{3} + C.$$

Здесь в качестве переменной интегрирования выступает функция $u = x^2$. Так как $d(x^2) = 2dx$, сделаем поправку на 1/2.

2.
$$\int e^{5\cos x} \sin x dx$$
.

Применим формулу (4) из таблицы интегралов. Так как $d(5\cos x) = -5\sin x dx$, сделаем поправку на минус 1/5.

Тогда
$$\int e^{5\cos x} \sin x dx = -\frac{1}{5} \int e^{5\cos x} (-5\sin x) dx = -\frac{1}{5} \int e^{5\cos x} d(5\cos x) =$$
$$= -\frac{1}{5} e^{5\cos x} + C.$$

3.
$$\int tg17xdx = 1/17 \int tg17x(17dx) = |d(17x)=17dx| = 1/17 \int tg17xd(17x) = 1/17 \cdot (-\ln|\cos 17x|) + C = -1/17 \ln|\cos 17x| + C.$$

4.
$$\int \frac{\sqrt{1 + \ln 2x}}{x} dx$$
. Применим формулу (1) из таблицы интегралов.

Так как
$$d(1 + \ln 2x) = \frac{dx}{x}$$
, получим

$$\int \frac{\sqrt{1+\ln 2x}}{x} dx = \int \left(1+\ln 2x\right)^{1/2} \cdot \frac{dx}{x} = \int \left(1+\ln 2x\right)^{1/2} d\left(1+\ln 2x\right) = \frac{2\left(1+\ln 2x\right)^{3/2}}{3} + C.$$

Решить самостоятельно:

1.
$$\int \frac{\ln^3 2x dx}{x}$$
; Other: $\frac{\ln^4 2x}{8} + C$.

2.
$$\int \frac{e^{-x}dx}{(5+e^{-x})^3}$$
; Other: $\frac{1}{2(5+e^{-x})^2} + C$.

3.
$$\int \frac{(x+1)dx}{\sqrt{x^2+2x+5}};$$
 OTBET: $\sqrt{x^2+2x+5}+C$.

4.
$$\int \frac{\cos 2x dx}{\sqrt[3]{7 - 3\sin 2x}};$$
 OTBET: $-1/4\sqrt[3]{(7 - 3\sin 2x)^2} + C$.

5.
$$\int \frac{(1 + \arcsin x)^2}{\sqrt{1 - x^2}} dx$$
; OTBET: $\frac{(1 + \arcsin x)^3}{3} + C$.

6.
$$\int \frac{\sqrt[3]{(3-5tgx/2)^4} dx}{\cos^2 x/2};$$
 Other: $-\frac{6}{35} \sqrt[3]{(3-5tg\frac{x}{2})^7} + C.$

$$7. \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx;$$

Ответ:
$$2e^{\sqrt{x}} + C$$
.

$$8. \int 2^{5x} dx;$$

OTBET:
$$\frac{2^{5x}}{5 \ln 2} + C$$
.

9.
$$\int \frac{k dx}{ax + B};$$

Ответ:
$$\frac{k}{a} \ln |ax + B| + C$$
.

$$10. \int \frac{x dx}{4 + x^2};$$

Otbet:
$$\frac{1}{2} \ln(4 + x^2) + C$$
.

$$11. \int \frac{\mathrm{dx}}{4+\mathrm{x}^2};$$

OTBET:
$$\frac{1}{2} \operatorname{arctg} \frac{x}{2} + C$$
.

$$12. \int \frac{x dx}{9 - 4x^4};$$

Otbet:
$$-\frac{1}{24} \ln \left| \frac{2x^2 - 3}{2x^2 + 3} \right| + C.$$

$$13. \int \sin \frac{x}{3} dx;$$

OTBET:
$$-3\cos\frac{x}{3} + C$$
.

14.
$$\int \cos x \cdot 3^{\sin x} dx$$
;

OTBET:
$$\frac{3^{\sin x}}{\ln 3} + C$$
.

$$15. \int x \cdot \sin \frac{1 - x^2}{3} dx;$$

Otbet:
$$\frac{3}{2}\cos\left(\frac{1-x^2}{3}\right) + C$$
.

С помощью этого же приема вычисляются интегралы вида

$$\int \frac{mdx}{ax^2 + bx + c}$$

$$\int \frac{mdx}{ax^2 + bx + c}; \qquad \int \frac{mdx}{\sqrt{ax^2 + bx + c}}.$$

Эти интегралы сводятся к табличным интегралам 9-12 путем выделения полного квадрата в квадратном трехчлене.

Примеры

1.
$$\int \frac{dx}{\sqrt{x^2 - 4x + 2}} = \int \frac{dx}{\sqrt{(x - 2)^2 - (\sqrt{2})^2}} = \ln |x - 2 + \sqrt{x^2 - 4x + 2}| + C.$$

2.
$$\int \frac{dx}{x^2 + 5x + 9} = \int \frac{dx}{(x^2 + 2x \cdot 5/2 + 25/4) - 25/4 + 9} = \int \frac{d(x + 5/2)}{(x + 5/2)^2 + \sqrt{11}/2} =$$
$$= \frac{1}{\sqrt{11}/2} \operatorname{arctg} \frac{(x + 5/2)}{\sqrt{11}/2} = \frac{2}{\sqrt{11}} \operatorname{arctg} \frac{2x + 5}{\sqrt{11}} + C.$$

3. Интегралы $\int \frac{(mx+n)dx}{ax^2+bx^2+c}$; $\int \frac{(mx+n)dx}{\sqrt{ax^2+bx+c}}$. В числителе - линейная функция, в знаменателе - квадратный трехчлен или корень квадратный из квадратного трехчлена. Чтобы такой интеграл привести к последней группе формул, надо в числителе выделить дифференциал квадратного трехчлена; разбить интеграл на сумму интегралов; первый интеграл будет типа $\int \frac{dv}{v}$ или $\int \frac{dv}{\sqrt{v}}$, а второй – 1-го типа.

Примеры

$$1. \int \frac{3x \, dx}{2x^2 + 2x + 5} = |d(2x^2 + 2x + 5) = (4x + 2)dx| = \frac{3}{4} \int \frac{[(4x + 2) - 2]dx}{2x^2 + 2x + 5} =$$

$$= \frac{3}{4} \left[\int \frac{(4x + 2) \, dx}{2x^2 + 2x + 5} - \int \frac{2dx}{2x^2 + 2x + 5} \right] = \frac{3}{4} \left[\int \frac{d(2x^2 + 2x + 5)}{2x^2 + 2x + 5} - 2 \cdot \frac{1}{2} \int \frac{dx}{x^2 + x + 5/2} \right] =$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \int \frac{d(x + 1/2)}{(x + 1/2)^2 + (3/2)^2} \right] =$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \frac{1}{3/2} \arctan \left(\frac{x + 1/2}{3/2} \right) \right] = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{2x + 1}{3} + C \right)$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \frac{1}{3/2} \arctan \left(\frac{x + 1/2}{3/2} \right) \right] = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{2x + 1}{3} + C \right)$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \frac{1}{3/2} \arctan \left(\frac{x + 1/2}{3/2} \right) \right] = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{2x + 1}{3} + C \right)$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \frac{1}{3/2} \arctan \left(\frac{x + 1/2}{3/2} \right) \right] = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{2x + 1}{3} + C \right)$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \frac{1}{3/2} \arctan \left(\frac{x + 1/2}{3/2} \right) \right] = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{2x + 1}{3} + C \right)$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \frac{1}{3/2} \arctan \left(\frac{x + 1/2}{3/2} \right) \right] = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) \right]$$

$$= \frac{3}{4} \left[\ln|2x^2 + 2x + 5| - \frac{1}{3/2} \arctan \left(\frac{x + 1/2}{3/2} \right) \right] = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x + 1/2}{3} \right) = \frac{3}{4} \ln|2x^2 + 2x + 5| - \frac{1}{2} \arctan \left(\frac{x$$

$$= -\frac{5}{2} \left[\int \frac{d(-x^2 - 2x + 8)}{\sqrt{-x^2 - 2x + 8}} + \frac{4}{5} \int \frac{dx}{\sqrt{8 - (x^2 + 2x + 1 - 1)}} \right] =$$

$$= -\frac{5}{2} \left[2\sqrt{-x^2 - 2x + 8} + \frac{4}{5} \int \frac{dx}{\sqrt{9 - (x + 1)^2}} \right] =$$

$$= -5\sqrt{-x^2 - 2x + 8} - 2\arcsin\frac{x + 1}{3} + C.$$

Интегрирование рациональных дробей

Рациональной дробью R(x) называется отношение двух многочленов, т. е. $R(x) = \frac{Q_m(x)}{P_n(x)} = \frac{B_0 x^m + B_1 x^{m-1} + ... + B_m}{a_0 x^n + a_1 x^{n-1} + ... + a_n}.$ Если m < n, то дробь R(x) называется <u>правильной</u>; если же $m \ge n$, то эта дробь <u>неправильная</u>. Приведем примеры. Следующие дроби правильные:

$$R_1(x) = \frac{1}{x^2 - 1}$$
, $m = 0$, $n = 2$; $R_2(x) = \frac{2x + 3}{x^2 + 5x - 1}$, $m = 1$, $n = 2$.

Следующие дроби неправильные:

$$R_3(x) = \frac{x^4 - 2x^3 + 1}{x^2 + 2x + 5}$$
, $m = 4$, $n = 2$; $R_4(x) = \frac{x^2 - 4}{x^2 + 1}$, $m = 2$, $n = 2$.

Если дробь R(x) неправильная, т. е. $m \ge n$, то, разделив числитель на знаменатель, можно выделить целую часть – многочлен x в степени m-n. Другими словами, всякую неправильную дробь R(x) можно представить в виде $R(x) = S_{m-n}(x) + R_1(x)$, где $S_{m-n}(x)$ - многочлен (m-n)-й степени и $R_1(x)$ - правильная дробь.

Пример. Выделить целую часть дроби $R(x) = \frac{x^5 - 4x^3 + 5x^2 - 7}{x^3 - 2x^2 + 4x + 1}$.

$$x^{5} - 4x^{3} + 5x^{2} - 7$$
 $x^{3} - 2x^{2} + 4x + 1$ $x^{5} - 2x^{4} + 4x^{3} + x^{2}$ $x^{2} + 2x - 4$ (частное) $-2x^{4} - 8x^{3} + 4x^{2} - 7$ $2x^{4} - 4x^{3} + 8x^{2} + 2x$ $-4x^{3} - 4x^{2} - 2x - 7$ $-4x^{3} + 8x^{2} - 16x - 4$ $-12x^{2} + 14x - 3$ (остаток)

$$R(x) = \frac{x^5 - 4x^3 + 5x^2 - 7}{x^3 - 2x^2 + 4x + 1} = (x^2 + 2x - 4) + \frac{-12x^2 + 14x - 3}{x^3 - 2x^2 + 4x + 1}.$$

Определение. Следующие рациональные дроби называются **простейшими дробями** первого, второго, третьего типов:

$$R_1(x) = \frac{A}{x - x_0}, \quad R_2(x) = \frac{A}{(x - x_0)^k}, \quad R_3(x) = \frac{Ax + B}{x^2 + px + q}.$$

Здесь A, B, x_0 , k, p, q - заданные константы, причем k - натуральное число. Квадратный трехчлен $x^2 + px + q$ имеет только комплексные корни.

Теорема о разложении рациональной дроби. Правильная рациональная дробь

 $R(x) = \frac{Q_{\rm m}(x)}{P_{\rm n}(x)}$ разлагается в сумму простейших дробей 1-3 типов в зависимости от корней знаменателя $P_{\rm n}(x)$. При этом возможны следующие случаи:

- а) если знаменатель $P_n(x)$ имеет простой вещественный корень $x=x_0$, то в разложении ему соответствует дробь первого вида: $A/(x-x_0)$;
- б) если $x = x_0$ вещественный корень кратностью k знаменателя $P_n(x)$, то в разложении ему соответствует сумма k дробей 1-2 типов:

$$\frac{A}{x-x_0} + \frac{B}{(x-x_0)^2} + ... + \frac{C}{(x-x_0)^k};$$

в) если $x_{1,2} = (\alpha \pm \beta i)$ - простые комплексные корни $P_n(x)$, то в разложении им соответствует дробь третьего вида $\frac{Ax+B}{x^2+px+q}$, причем x_1 и x_2 - суть корни трехчлена x^2+px+q .

Разложение дроби на простейшие рекомендуется проводить по следующей схеме.

- 1. Найти все корни знаменателя $P_{n}(x)$ и определить их кратность.
- 2. Разложить знаменатель $P_{n}(x)$ на множители.
- 3. Написать сумму простейших дробей, соответствующих корням знаменателя $P_{n}(x)$.

Пример. Написать разложение дроби
$$R(x) = \frac{2x^2 - 3x + 3}{x^3 - 2x^2 + x}$$
.

Здесь $P_3(x) = x^3 - 2x^2 + x = x(x^2 - 2x + 1) = x(x - 1)^2$. Таким образом, $x_1 = 0$ - простой корень, ему соответствует дробь A/x, $x_2 = 1$ - двукратный корень, ему

соответствует сумма
$$\frac{B}{x-1} + \frac{C}{(x-1)^2}$$
; $\frac{2x^2 - 3x + 3}{x^3 - 2x^2 + x} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$.

Пример. Написать разложение дроби $R(x) = \frac{1}{x^3 + 1}$.

Здесь $P_3(x) = x^3 + 1 = (x+1)(x^2 - x+1)$. Корни знаменателя: $x_1 = -1$ - простой вещественный, $x_{2,3} = \frac{1}{2} \pm \frac{\sqrt{3}}{2} i$ - комплексные;

$$\frac{1}{x^3+1} = \frac{1}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}.$$

Нахождение неопределенных коэффициентов

Коэффициенты A, B, C, . . . разложения можно находить двумя способами. **Первый способ**. Приведем правую часть равенства

$$\frac{2x^2 - 3x + 3}{x(x - 1)^2} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{(x - 1)^2}$$
 (1)

к общему знаменателю:
$$\frac{2x^2 - 3x + 3}{x(x-1)^2} = \frac{A(x-1)^2 + Bx(x-1) + Cx}{x(x-1)^2}.$$

Отсюда следует, что $2x^2 - 3x + 3 = A(x - 1)^2 + Bx(x - 1) + Cx$. Придавая аргументу значения x = 0, x = 1, x = -1, получим систему трех уравнений с тремя неизвестными: A, B, C.

$$x = 0 x = 1 x = -1$$

$$\begin{cases} 3 = A \\ 2 = C \\ 8 = 4A + 2B - C \end{cases} \Rightarrow \begin{cases} A = 3 \\ C = 2 \\ B = -1. \end{cases}$$

Разложение дроби имеет вид
$$\frac{2x^2 - 3x + 3}{x(x-1)^2} = \frac{3}{x} - \frac{1}{x-1} + \frac{2}{(x-1)^2}.$$

Замечание. В качестве значений х удобно брать корни знаменателя.

Второй способ. После приведения равенства (1) к целому виду $2x^2 - 3x + 3 = A(x-1)^2 + Bx(x-1) + Cx$ получим равенство двух многочленов второй степени $2x^2 - 3x + 3 = (A+B)x^2 + (-2A-B+C)x + A$. Приравнивая коэффициенты при x^2 , x и свободные члены, получим

$$egin{array}{c|c} x^2 & A+B=2 \\ x^1 & -2A-B+C=-3 \\ x^0 & A=3 \end{array}$$
 или $egin{array}{c} B=-1 \\ C=2 \\ A=3 \end{array}$

Упражнение. Разложите на простейшие следующие дроби:

$$R_1(x) = \frac{1}{x^3 - 1}; \quad R_2(x) = \frac{x^2 - x + 2}{2x^2 + x^3}; \quad R_3(x) = \frac{3x + 5}{x^4 + x^3 + x^2 + x}.$$

Разложив данную правильную рациональную дробь на простейшие, можно взять интеграл от обеих частей полученного равенства. Таким образом, интегрирование всякой рациональной дроби сводится в конечном счете к интегралам

$$J_1 = \int \frac{A}{x - x_0} dx$$
, $J_2 = \int \frac{A}{(x - x_0)^k} dx$, $J_3 = \int \frac{Ax + B}{x^2 + px + q} dx$.

Пример. Найти интеграл $J = \int \frac{x^4 + 1}{x^3 - x^2 + x - 1} dx$. Разделив числитель на знаме-

натель, получим
$$\frac{x^4+1}{x^3-x^2+x-1} = x+1+\frac{2}{x^3-x^2+x-1}$$
.

Поэтому $J = \int x dx + \int dx + 2 \int \frac{dx}{x^3 - x^2 + x - 1} = \frac{x^2}{2} + x + 2J_1$. Разложим знаменатель на множители: $x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1)$. Корню $x_1 = 1$ соответствует дробь $\frac{A}{x - 1}$, корням $x_{2,3} = \pm i$ соответствует дробь $\frac{Bx + C}{x^2 + 1}$,

т. е.
$$\frac{1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$$
 или
$$1 = A(x^2+1) + (Bx+C)(x-1).$$

При x=1 1=2A, A=1/2, при x=0 1=A-C, C=-1/2, при x=-1, 1=2A+2B-2C, B=-1/2.

$$\begin{split} J_1 &= \int \frac{dx}{(x-1)(x^2+1)} = \int \frac{1/2}{x-1} dx + \int \frac{(-1/2)x - 1/2}{x^2+1} dx = \frac{1}{2} \int \frac{dx}{x-1} - \frac{1}{2} \int \frac{x \, dx}{x^2+1} - \\ &= \frac{1}{2} \int \frac{dx}{x^2+1} = \frac{1}{2} \ln|x-1| - \frac{1}{4} \ln(x^2+1) - \frac{1}{2} \arctan(x^2+1) - \arctan(x^2+1)$$

Примеры для самостоятельного решения

Найти следующие интегралы:

$$\begin{split} &J_1 = \int \frac{x dx}{(x+1)(2x+1)}. & \text{Otbet: } J_1 = \ln |x+1| - \frac{1}{2} \ln |2x+1| + C\,. \\ &J_2 = \int \frac{(x^3+1) dx}{x^3-x^2}. & \text{Otbet: } J_2 = x + \frac{1}{x} + 2 \ln |x-1| - \ln |x| + C\,. \\ &J_3 = \int \frac{x dx}{x^3-1}. & \text{Otbet: } J_3 = \frac{1}{3} \ln |x-1| - \frac{1}{6} \ln |x^2+x+1| + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x+1}{\sqrt{3}} + C\,. \end{split}$$

Интегрирование по частям

Если u = u(x) и V = V(x) - дифференцируемые функции, то справедлива следующая формула интегрирования по частям: $\int u dv = u \cdot v - \int v du$. При нахождении $\int f(x) dx$ подынтегральное выражение f(x) dx разбивают на два сомножителя ($u \ u \ dv$) таким образом, чтобы вновь образованный интеграл $\int v du$ был табличным или сводился к табличному.

Основные классы функций, интегрируемых по частям

1. Интегралы вида $J_1 = \int P_n(x) \cos \alpha x \, dx$, $J_2 = \int P_n(x) \sin \alpha x \, dx$, $J_3 = \int P_n(x) e^{\alpha x} dx$. Здесь $P_n(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$ - многочлен n-й степени. Во всех случаях в качестве функции u(x) берется многочлен $P_n(x)$.

Пример. Найти $\int x \cos 3x dx$. Здесь u = x, $dv = \cos 3x dx$.

$$J = \int x \cos 3x dx = \begin{vmatrix} u = x, & dv = \cos 3x dx \\ du = dx, & v = 1/3 \sin 3x \end{vmatrix} = \frac{1}{3} x \sin 3x - \frac{1}{3} \int \sin 3x dx = \frac{1}{3} x \sin 3x + \frac{1}{9} \cos 3x + C.$$

В общем случае, если многочлен k-й степени, формулу интегрирования по частям следует применить k раз.

Пример.
$$J = \int (x^2 - 1)e^{2x} dx = \Big|_{x^2 - 1 = u, dv = e^{2x} dx,} = du = 2xdx, v = 1/2 \cdot e^{2x}$$
$$= \frac{1}{2} (x^2 - 1)e^{2x} - \int xe^{2x} dx = 1/2(x^2 - 1)e^{2x} - J_1.$$

$$J_{1} = \int xe^{2x} dx = \begin{vmatrix} u = x, & dv = e^{2x} dx \\ du = dx, & v = 1/2 \cdot e^{2x} \end{vmatrix} = \frac{1}{2}x \cdot e^{2x} - \frac{1}{2}\int e^{2x} dx = \frac{1}{2}x \cdot e^{2x} - \frac{1}{4}e^{2x};$$

$$J = \frac{1}{2}(x^2 - 1) \cdot e^{2x} - \frac{1}{2}x \cdot e^{2x} + \frac{1}{4}e^{2x} + C.$$

2. Интегралы, содержащие обратные тригонометрические функции или логарифмы: $J_1 = \int P_n(x) \arcsin \alpha x \ dx$, $J_2 = \int P_n(x) \arctan \alpha x \ dx$, $J_3 = \int P_n(x) \ln x \ dx$. Здесь в качестве функции u(x) следует взять обратную тригонометрическую функцию или логарифм.

Пример.
$$J = \int x \cdot \operatorname{arctgxdx} = \begin{vmatrix} u = \operatorname{arctg} x, \ du = \frac{dx}{1+x^2}, \ v = \frac{x^2}{2}, \ dv = x \, dx \end{vmatrix} = \frac{x^2}{2} \operatorname{arctg} x - \frac{1}{2} \int \frac{x^2 dx}{1+x^2} = \frac{x^2}{2} \operatorname{arctgx} - \frac{1}{2} J_1.$$

$$J_1 = \int \frac{(x^2+1)-1}{x^2+1} dx = \int (1-\frac{1}{x^2+1}) dx = \int dx - \int \frac{dx}{x^2+1} = x - \operatorname{arctgx};$$

$$J = \frac{x^2}{2} \operatorname{arctgx} - \frac{1}{2} x + \frac{1}{2} \operatorname{arctgx} + C.$$

Примеры для самостоятельного решения

1.
$$\int (x+2)^2 \sin 5x \, dx$$
. Other: $C - \frac{1}{5}(x+2)^2 \cos 5x + \frac{2}{25}(x+2)\sin 5x + \frac{2}{125}\cos 5x$.

2.
$$\int x \ln 3x \, dx$$
. Other: $\frac{x^2}{2} \ln 3x - \frac{x^2}{4} + C$.

3.
$$\int x^3 2^{3x} dx$$
. Other: $\frac{2^{3x}}{3 \ln 2} \left(x^3 - \frac{x^2}{\ln 2} + \frac{2x}{3(\ln 2)^2} - \frac{2}{9(\ln 2)^3} \right) + C$.

4.
$$\int (x+1)\cos^2\frac{x}{3}dx$$
. Other: $\frac{1}{4}x^2 + \frac{1}{2}x + \frac{3}{4}(x+1)\sin\frac{2x}{3} + \frac{9}{8}\cos\frac{2x}{3} + C$.

Интегрирование тригонометрических функций

Рассмотрим интеграл вида $J = \int f(\cos x, \sin x) \, dx$, где f - рациональная функция относительно $\cos x$ и $\sin x$. Такой интеграл c помощью так называемой универсальной тригонометрической подстановки tg(x/2) = t приводится k интегралу от рациональной дроби относительно k. Замена переменных выполняется по следующим формулам:

$$tg\frac{x}{2} = t$$
, $dx = \frac{2dt}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$.

Пример. Найти интеграл
$$J = \int \frac{dx}{8 - 4\sin x + 7\cos x}$$
.

После замены переменных получим

$$J = \int \frac{\frac{2dt}{1+t^2}}{8-4\frac{2t}{1+t^2} + 7 \cdot \frac{1-t^2}{1+t^2}} = \int \frac{2dt}{t^2 - 8t + 15} = 2 \int \frac{dt}{(t-4)^2 - 1} =$$

$$= 2 \cdot \frac{1}{2} \ln \left| \frac{t - 4 - 1}{t - 4 + 1} \right| + C = \ln \left| \frac{t - 5}{t - 3} \right| + C$$

Так как
$$t = tg(x/2)$$
, $J = ln \left| \frac{tg(x/2) - 5}{tg(x/2) - 3} \right| + C$. Подстановка $tg(x/2) = t$ из-за уни-

версальности приводит, как правило, к сложным рациональным дробям, поэтому эту подстановку используют только в крайних случаях. Многие интегралы можно найти проще. Рассмотрим примеры.

1. Интегралы $J_1 = \int \cos \alpha x \cdot \cos \beta x \, dx$, $J_2 = \int \sin \alpha x \cdot \sin \beta x \, dx$,

$$J_3 = \int \sin \alpha x \cdot \cos \beta x dx.$$

Здесь достаточно использовать школьные формулы:

$$\cos \alpha \cdot \cos \beta = (1/2) \cdot \left[\cos (\alpha - \beta) + \cos (\alpha + \beta)\right],$$

$$\sin \alpha \sin \beta = (1/2) \cdot \left[\cos (\alpha - \beta) - \cos (\alpha + \beta)\right],$$

$$\sin \alpha \cos \beta = (1/2) \cdot \left[\sin (\alpha - \beta) + \sin (\alpha + \beta)\right].$$

Пример. $J = \int \sin 3x \cos 2x \, dx = \frac{1}{2} \int (\sin x + \sin 5x) dx = \frac{1}{2} \int \sin x dx + \frac{1}{2} \int \sin 5x \, dx = \frac{1}{2} \cos x - \frac{1}{10} \cos 5x + C.$

2. Интеграл $J = \int f(\cos x, \sin x) dx$, где подынтегральная функция четная относительно синуса и косинуса, т. е. $f(-\cos x, -\sin x) = f(\cos x, \sin x)$. Для рационализации применяется подстановка tg(x) = t,

тогда

$$\cos x = \frac{1}{\sqrt{1 + tg^2 \alpha}} = \frac{1}{\sqrt{1 + t^2}};$$

$$\sin x = \frac{tgx}{\sqrt{1 + tg^2x}} = \frac{t}{\sqrt{1 + t^2}}; dx = \frac{dt}{1 + t^2}.$$

Эта же подстановка приводит к цели, если $J = \int f(tgx) dx$.

Примеры

1.
$$J = \int \frac{dx}{2 - \sin^2 x} = |tgx = t| = \int \frac{\frac{dt}{1 + t^2}}{2 - \frac{t^2}{1 + t^2}} =$$

$$= \int \frac{\mathrm{d}t}{t^2 + 2} = \frac{1}{\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + C = \frac{1}{\sqrt{2}} \arctan \frac{tgx}{\sqrt{2}} + C.$$

2.
$$\int \frac{1}{\sin^2 x + 2\sin x \cdot \cos x - 5\cos^2 x} dx = \begin{cases} \tan x = t, & \sin x = \frac{t}{\sqrt{1 + t^2}}; \\ \cos x = \frac{1}{\sqrt{1 + t^2}}, & dx = \frac{dt}{1 + t^2} \end{cases}$$

$$= \int \frac{\frac{dt}{1+t^2}}{\frac{t^2}{1+t^2} + 2\frac{t}{\sqrt{1+t^2}} \cdot \frac{1}{\sqrt{1+t^2}} - 5\frac{1}{1+t^2}} = \int \frac{dt}{t^2 + 2t - 5} = \int \frac{d(t+1)}{(t+1)^2 - (\sqrt{6})^2} =$$

$$= \frac{1}{2\sqrt{6}} \ln \left| \frac{t+1-\sqrt{6}}{t+1+\sqrt{6}} \right| = \frac{1}{2\sqrt{6}} \ln \left| \frac{tgx+1-\sqrt{6}}{tgx+1+\sqrt{6}} \right| + C.$$

- 3. Интеграл вида $J = \int \sin^m x \cdot \cos^n x dx$. Здесь возможны следующие случаи:
- а) если $\,$ m $\,$ и $\,$ n $\,$ четные $\,$ и неотрицательные числа , то для вычисления интеграла используются формулы понижения степени:

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
; $\sin^2 x = \frac{1 - \cos 2x}{2}$.

Пример. Найти интеграл $J = \int \cos^4 x dx$.

$$\cos^{4} x = \left(\frac{1+\cos 2x}{2}\right)^{2} = \frac{1}{4}\left(1+2\cos 2x+\cos^{2} 2x\right) = \frac{1}{4}\left(1+2\cos 2x+\frac{1+\cos 4x}{2}\right) =$$

$$= \frac{1}{8}\left(3+4\cos 2x+\cos 4x\right);$$

$$J = \frac{1}{8}\int \left(3+4\cos^{2} x+\cos 4x\right)dx = \frac{1}{8}\left(3x+2\sin 2x+\frac{1}{4}\sin 4x\right)+C;$$

б) если одно из чисел m и n - нечетное натуральное число, то используем формулы $\sin^2 x = 1 - \cos^2 x$, $\cos^2 x = 1 - \sin^2 x$.

Пример. Найти интеграл $J = \int \sin^3 x \cdot \cos^2 x \ dx$.

 $\sin^3 x \cdot \cos^2 x = \sin^2 x \cdot \cos^2 x \cdot \sin x = (1 - \cos^2 x)\cos^2 x \cdot \sin x = (\cos^2 x - \cos^4 x)\sin x.$

$$J = \int (\cos^2 x - \cos^4 x) \sin x dx = \begin{vmatrix} \cos x = t, & -\sin x dx = dt \end{vmatrix}$$

$$= -\int (t^2 - t^4) dt = -\frac{t^3}{3} + \frac{t^5}{5} + C = \frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C.$$

4. Интегралы вида $J = \int \sec^n x \ dx$, $J = \int \csc^m x \ dx$, где n и m – нечетные положительные числа, можно найти по частям следующим образом.

Пример.

$$J = \int \sec^3 x \, dx = \begin{vmatrix} u = \sec x, & dv = \sec^2 x \, dx, & du = \sec x \cdot tg \, x \, dx, & v = tg \, x \end{vmatrix}$$

$$= \sec x \cdot tg \, x - \int \sec x \cdot tg^2 x \, dx = = \sec x \cdot tg \, x - \int \sec x \, (\sec^2 x - 1) dx.$$

Итак,
$$\int \sec^3 x \, dx = \sec x \cdot tg \, x - \int \sec^3 x \, dx + \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$$
.

Отсюда
$$2\int \sec^3 x dx = \sec x t g x + \ln \left| t g \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C.$$

$$\int \sec^3 x dx = \frac{1}{2} \sec x \cdot t gx + \frac{1}{2} \ln \left| t g \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C.$$

Примеры для самостоятельного решения

1.
$$\int \sin^2 x \cos^4 x \, dx$$
; Other: $\frac{1}{16}x - \frac{1}{64}\sin 4x + \frac{1}{48}\sin^3 2x + C$.

2.
$$\int \sin^3 x \sqrt{\cos x} \, dx; \qquad \text{Othet:} \quad 2\sqrt{\cos^3 x} \left(\frac{1}{7} \cos^2 x - \frac{1}{3}\right) + C.$$

3.
$$\int \sin 4x \cdot \sin 6x \, dx$$
; Other: $\frac{1}{4} \sin 2x - \frac{1}{20} \sin 10x + C$.

4.
$$\int \frac{dx}{5+4\sin x}$$
; OTBET: $\frac{2}{3} \arctan \frac{5tg^{\frac{x}{2}}+4}{3} + C$.

Интегрирование иррациональных функций

1. Тригонометрические подстановки.

Если интеграл имеет вид $J_1 = \int f(x, \sqrt{a^2 - x^2}) dx$, то $x = a \sin t$; $dx = a \cos t$;

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 t} = a\sqrt{1 - \sin^2 t} = a \cdot \cos t$$
.

Если интеграл имеет вид $J_2 = \int f(x, \sqrt{a^2 + x^2}) dx$, то x = atg t, $dx = a sec^2 t dt$,

$$\sqrt{a^2 + x^2} = \sqrt{a^2 + a^2 t g^2 t} = a \sqrt{1 + t g^2 t} = a \cdot sec t.$$

Если интеграл имеет вид $J_3 = \int f(x, \sqrt{x^2 - a^2}) dx$, то $x = a \sec t$, $dx = a \sec t \cdot tg + t \cdot dt$,

$$\sqrt{x^2 - a^2} = \sqrt{a^2 \sec^2 t - a^2} = a\sqrt{\sec^2 t - 1} = atgt.$$

Примеры

1.
$$J = \int \frac{\sqrt{4 - x^2}}{x} dx = \begin{vmatrix} x = 2\sin t \\ dx = 2\cos t dt \end{vmatrix} = \int \frac{2\cos t}{2\sin t} 2\cos t dt = 2\int \frac{\cos^2 t}{\sin t} dt = 2\int \frac{1 - \sin^2 t}{\sin t} dt = 2\int (\cos \cot t) dt = 2\int \ln \left| tg \frac{t}{2} \right| + \cos t + C.$$

Возврат к старой переменной х проще выполнить с помощью треугольника.

$$\sin t = x/2, \quad \cos t = \frac{\sqrt{4 - x^2}}{2},$$

$$tg \frac{t}{2} = \sqrt{\frac{1 - \cos t}{1 + \cos t}} = \frac{1 - \cos t}{\sin t};$$

$$tg \frac{t}{2} = \frac{2 - \sqrt{4 - x^2}}{x};$$

$$J = 2\ln\left|\frac{2 - \sqrt{4 - x^2}}{x}\right| + \sqrt{4 - x^2} + C.$$

2.
$$\int \frac{dx}{x^3 \sqrt{x^2 - 2}} = \begin{vmatrix} x = \sqrt{2} \cdot \sec t, \\ dx = \sqrt{2} \cdot \sec t \cdot tg t dt \end{vmatrix} = \int \frac{\sqrt{2} \sec t \cdot tg t \cdot dt}{\left(\sqrt{2} \cdot \sec t\right)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{dx}{(\sqrt{2} \cdot \sec^2 t)^3 \sqrt{2 \sec^2 t - 2}}$$

$$= \int \frac{\sqrt{2} \sec t \cdot tg \ t \cdot dt}{\left(\sqrt{2} \cdot \sec t\right)^3 \sqrt{2 \sec^2 t - 2}} = \int \frac{\sqrt{2} \cdot \sec t \cdot tg \ t \ dt}{2\sqrt{2} \cdot \sec^3 t \cdot \sqrt{2} tg \ t} = \frac{1}{2\sqrt{2}} \int \frac{dt}{\sec^2 t} = \frac{1}{2\sqrt{2}} \int \frac{dt}{\cot^2 t} = \frac{1}$$

$$= \frac{1}{2\sqrt{2}} \cdot \int \cos^2 t \, dt = \frac{1}{2\sqrt{2}} \cdot \int \frac{1 + \cos 2t}{2} dt = \frac{1}{4\sqrt{2}} \left(t + \frac{1}{2} \sin 2t \right) = \frac{1}{4\sqrt{2}} \left(t + \sin t \cos t \right) = J.$$

Из подстановки $x = \sqrt{2} \sec t \Rightarrow \frac{x}{\sqrt{2}} = \sec t \Rightarrow \cos t = \sqrt{2}/x$,

$$\sin t = \sqrt{1 - \cos^2 t} = \sqrt{1 - \frac{2}{x^2}}; \quad t = \arccos \frac{\sqrt{2}}{x}.$$

Тогла

$$\int \frac{dx}{x^3 \sqrt{x^2 - 2}} = \frac{1}{4\sqrt{2}} \left(\arccos \frac{\sqrt{2}}{x} + \frac{\sqrt{2}}{x} \cdot \sqrt{1 - \frac{2}{x^2}} \right) = \frac{1}{4\sqrt{2}} \left(\arccos \frac{\sqrt{2}}{x} + \frac{\sqrt{2}\sqrt{x^2 - 2}}{x^2} \right) + C.$$

2. Интегралы вида $J_1 = \int R\left(x, x^{\frac{m}{n}}, x^{\frac{p}{q}}, ..., x^{\frac{r}{e}}\right) dx$, содержащие дробные степе-

ни x, приводятся к интегралам от рациональных функций с помощью подстановки $x=t^k$, где k - наименьший общий знаменатель дробных показателей x.

Интегралы вида
$$J_2 = \int R\left(x, (ax + B)^{\frac{m}{n}}, (ax + B)^{\frac{p}{q}}, ..., (ax + B)^{\frac{r}{e}}\right) dx$$
, содержащие

дробные степени линейного двучлена ax+b, приводятся к интегралам от иррациональных функций с помощью подстановки $ax+b=t^k$, где k - наименьший общий знаменатель дробных показателей ax+b.

Примеры

1.
$$\int \frac{dx}{\sqrt{x}(\sqrt[3]{x}+1)} = \int \frac{6t^5dt}{\sqrt{t^6}(\sqrt[3]{t^6}+1)}.$$

Так как x имеет дробные показатели $\left(x^{\frac{1}{2}}$ и $x^{\frac{1}{3}}\right)$, применим подстановку $x=t^6$; dx=6 t^5 dt.

Тогда
$$\int \frac{6t^5 dt}{t^3 (t^2 + 1)} = 6 \int \frac{t^2 dt}{t^2 + 1} = 6 \int \frac{(t^2 + 1) - 1}{t^2 + 1} dt =$$

$$= 6 \left[\int \frac{t^2 + 1}{t^2 + 1} dt - \int \frac{dt}{t^2 + 1} \right] = 6 \left[\int dt - \int \frac{dt}{t^2 + 1} \right] = 6(t - \operatorname{arctgt}),$$

вернемся к x: $x = t^6 \Rightarrow t = \sqrt[6]{x}$ $6\sqrt[6]{x} - 6 \cdot arc tg \sqrt[6]{x} + C$.

$$2. \int \frac{dx}{\sqrt[3]{(2x+1)^2} - \sqrt{2x+1}}.$$

Здесь $(2x+1)^{2/3}$ и $(2x+1)^{1/2}$. Применим подстановку $2x+1=t^6$; $dx=3t^5dt$.

Тогда
$$\int \frac{3t^5 dt}{\sqrt[3]{\left(t^6\right)^2} - \sqrt{t^6}} = 3 \int \frac{t^5 dt}{t^4 - t^3} = 3 \int \frac{t^2 dt}{t - 1} = 3 \int \left(t + 1 + \frac{1}{t - 1}\right) dt =$$
$$= 3 \left(\frac{t^2}{2} + t + \ln|t - 1|\right) = \left|2x + 1\right| = t^6.$$

Следовательно,
$$\int \frac{dx}{\sqrt[3]{(2x+1)} - \sqrt{2x+1}} = \frac{3}{2} \sqrt[6]{(2x+1)^2} + 3 \sqrt[6]{2x+1} + 3 \ln \left| \sqrt[6]{2x+1} - 1 \right| + C.$$

Примеры для самостоятельного решения

1.
$$\int \frac{dx}{x^2 \sqrt{1+x^2}}.$$
 Other: $C - \frac{\sqrt{1+x^2}}{x}.$

2.
$$\int \frac{\sqrt{x^2 - 1} dx}{x}$$
. Other: $\sqrt{x^2 - 1} - \arccos \frac{1}{x} + C$.

3.
$$\int \frac{\sqrt{x} dx}{\sqrt[3]{x^2 - \sqrt[4]{x}}} \cdot OTBET: \quad \frac{6}{5} \left(\sqrt[6]{x^5} + 2 \sqrt[12]{x^5} + 2 \ln \left| \sqrt[12]{x^5} - 1 \right| \right) + C.$$

4.
$$\int \frac{\sqrt{1+\ln x}}{x\ln x} dx$$
. Otbet: $2\sqrt{1+\ln x} - \ln \left| \frac{1+\sqrt{1+\ln x}}{1-\sqrt{1+\ln x}} \right| + C$.

Определенный интеграл и его приложения

Пусть функция f(x) определена на отрезке [a, b]. Разобьем этот отрезок про- извольно на n частей точками $x_0 = a, x_1, x_2, ..., x_n = b$. В каждом из образовавшихся отрезков $[x_{i-1}, x_i]$ возьмем произвольную точку \overline{x}_i и вычислим значение функции $f(\overline{x}_i)$. Обозначив длину соответствующего отрезка $\Delta x_i = x_i - x_{i-1}$, составим сумму $\sum_{i=1}^n f(\overline{x}_i) \cdot \Delta x_i$, которая называется **интегральной** суммой функции f(x) на отрезке [a, b].

Определение. Предел интегральной суммы при условии, что число частичных отрезков неограниченно увеличивается, а длина наибольшего из них стремится к нулю, **называется определенным интегралом** от функции f(x) на отрезке [a, b],

$$\text{T. e. } \int_{a}^{b} f(x) dx = \lim_{\substack{n \to \infty \\ \max \Delta x_{i} \to 0}} \sum_{i=1}^{n} f(\overline{x}_{i}) \cdot \Delta x_{i}.$$

Заметим, чтобы существовал предел, т. е. **чтобы существовал определенный** интеграл, достаточно, чтобы подынтегральная функция f(x) была на отрезке интегрирования [a, b] непрерывной.

Свойства определенного интеграла

$$1. \int_a^b f(x) dx = -\int_b^a f(x) dx.$$

2.
$$\int\limits_{a}^{b} \left[c_{1}f_{1}(x) \pm c_{2}f_{2}(x) \right] dx = c_{1}\int\limits_{a}^{b} f_{1}(x) dx \pm c_{2}\int\limits_{a}^{b} f_{2}(x) dx, \ (c_{1} \text{ и } c_{2} - \text{постоянныe}).$$

3.
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$
, где $a \le c \le b$.

4. Если
$$(\forall x \in [a, b]) f(x) \le \phi(x)$$
, то $\int_a^b f(x) dx \le \int_a^b \phi(x) dx$.

- 5. Теорема **об оценке** определенного интеграла. Если m наименьшее, M наибольшее значения f(x) на [a,b], то $m(b-a) \leq \int\limits_a^b f(x) dx \leq M(b-a)$.
- 6. Теорема **о среднем** значении f(x) на [a,b]. Если f(x) непрерывна на [a,b], то на этом отрезке существует такая точка $c(a \le c \le b)$, что $\int_a^b f(x) dx = f(c)(b-a)$.
- 7. **Геометрический смысл** определенного интеграла: если $\forall x \in [a,b]$ $f(x) \ge 0$, то $\int_a^b f(x) dx$ численно равен площади криволинейной трапеции, ограниченной графиком функции f(x), отрезком [a,b] оси ОХ и прямыми x=a, x=b.

Задание: попробуйте самостоятельно дать геометрическую интерпретацию свойств 3 - 6 определенного интеграла.

Формула Ньютона-Лейбница

Чтобы вычислить определенный интеграл на отрезке [a,b] от непрерывной на этом отрезке функции f(x), надо найти первообразную этой функции с помощью неопределенного интеграла, а затем вычислить разность значений этой первообразной на верхнем и нижнем пределах интегрирования, т. е. следует воспользоваться формулой Ньютона-Лейбница:

$$\int\limits_{a}^{b} f(x) dx = F(x) \Bigg|_{a}^{b} = F(b) - F(a)$$
 Пример. Вычислить
$$\int_{1}^{\sqrt{e}} \frac{dx}{x \sqrt{1 - \ln^{2} x}} \, .$$

$$\int_{1}^{\sqrt{e}} \frac{dx}{x\sqrt{1-\ln^2 x}} = \arcsin(\ln x) \Big|_{1}^{\sqrt{e}} = \arcsin(\ln \sqrt{e}) - \arcsin(\ln 1) = \arcsin\frac{1}{2} - \arcsin 0 = \frac{\pi}{6}$$

Пример. Вычислить $\int\limits_0^3 \mathbf{x} \cdot \operatorname{arctg} \mathbf{x} \, d\mathbf{x}$. Применяем формулу определенного интег-

рирования по частям: $\int_{a}^{b} u dv = uv \left| \frac{b}{a} - \int_{a}^{b} v du \right|.$

$$\int_{0}^{3} x \cdot \operatorname{arctgxdx} = \left| u = \operatorname{arctgx}; du = \frac{dx}{1+x^{2}}; dv = xdx; v = \frac{1}{2}x^{2} = \frac{1}{2}x^{2}\operatorname{arctgx} \left| \frac{3}{0} - \frac{1}{2} \int_{0}^{3} \frac{x^{2} + 1 - 1}{1 + x^{2}} dx = \left(\frac{1}{2}x^{2}\operatorname{arctgx} - \frac{1}{2}x + \frac{1}{2}\operatorname{arctgx} \right) \right|_{0}^{3} = \frac{9}{2}\operatorname{arctg} 3 - \frac{3}{2} + \frac{1}{2}\operatorname{arctg} 3 = 5\operatorname{arctg} 3 - \frac{3}{2}.$$

Пример. Вычислить $J = \int_{0}^{\kappa} \sqrt{R^2 - x^2} dx$. Найдем первообразную подынтеграль-

ной функции с помощью тригонометрической подстановки:

 $x = R \sin t$, $dt = R \cos t dt$. Найдем новые границы: $x_1 = 0$; $0 = R \sin t \implies t_1 = 0$.

$$x_{2} = R; R = R \sin t \Rightarrow \sin t = 1; t_{2} = \frac{\pi}{2}.$$

$$J = \int_{0}^{R} \sqrt{R^{2} - x^{2}} dx = \int_{0}^{\pi/2} \sqrt{R^{2} - R^{2} \sin t} R \cos t dt \int_{0}^{\pi/2} R^{2} \cos^{2} t dt = R^{2} \int_{0}^{\pi/2} \frac{1 + \cos 2t}{2} dt =$$

$$= \frac{1}{2} R^{2} \left(t + \frac{1}{2} \sin 2t \right) \Big|_{0}^{\pi/2} = \frac{1}{2} R^{2} \left(\frac{\pi}{2} + \frac{1}{2} \sin \pi - 0 - \frac{1}{2} \sin 0 \right) = \frac{\pi R^{2}}{4}.$$

Несобственные интегралы

В задачах, связанных с понятием определенного интеграла, речь идет о **непрерывных** функциях, заданных в **конечном** замкнутом промежутке [a, b]. Нарушение одного из этих требований: функция f(x) терпит разрыв внутри отрезка ин-

тегрирования [a, b] или на одном из его концов или промежуток интегрирования бесконечен $(]-\infty, a], [a, +\infty[,]-\infty, +\infty[)$ - приводит к понятию **несобственных интегралов**.

Определение 1. Если f(x) непрерывна в интервале $[a, +\infty[$, то несобственным интегралом 1-го рода называют интеграл $\int_a^{+\infty} f(x) \, dx = \lim_{b \to +\infty} \int_a^b f(x) \, dx$. При этом, несобственный интеграл сходится, если предел существует и конечен. Если этот предел не существует или бесконечен, то несобственный интеграл расходится.

Аналогично
$$\int\limits_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int\limits_{a}^{b} f(x) dx, \qquad \int\limits_{-\infty}^{+\infty} f(x) dx = \lim_{t \to \infty} \int\limits_{-t}^{+t} f(x) dx.$$

Пример. Вычислить
$$\int\limits_{e^2}^{+\infty} \frac{dx}{x \ln^3 x} = \lim_{b \to +\infty} \int\limits_{e^2}^{b} (\ln x)^{-3} d(\ln x) = \lim_{b \to +\infty} \left(-\frac{1}{2 \ln^2 x} \right) \bigg|_{e^2}^{b} =$$

$$= -\frac{1}{2} \lim_{b \to +\infty} \left[\frac{1}{\ln^2 b} - \frac{1}{\ln^2 e^2} \right] = -\frac{1}{2} \left[0 - \frac{1}{4} \right] = \frac{1}{8}.$$

Следовательно, интеграл сходится.

Пример.
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5} = \lim_{t \to \infty} \int_{-t}^{t} \frac{dx}{(x+1)^2 + 2^2} = \frac{1}{2} \lim_{t \to \infty} \arctan \left(\frac{x+1}{2} \right) \Big|_{-t}^{t} =$$

$$=\frac{1}{2}\lim_{t\to\infty}\left[rctgrac{t+1}{2}-rctgrac{1-t}{2}
ight]=rac{1}{2}\left[rac{\pi}{2}+rac{\pi}{2}
ight]=rac{\pi}{2}$$
 . Интеграл сходится.

Пример.

 $\int\limits_0^{+\infty}\cos x\,dx=\lim_{b\to +\infty}\sin x\left|\limits_0^b=\lim_{b\to +\infty}(\sin b-\sin 0)=\lim_{x\to +\infty}\sin b\right.,\ предел\ не\ существует,\ следовательно, интеграл расходится.$

Определение 2. Если f(x) терпит бесконечный разрыв в точке x = a или x = b, или x = c(a < c < b), то $\int_a^b f(x) dx$ называется несобственным интегралом II-го рода. Вычисляют такие интегралы следующим образом:

a)
$$\int\limits_a^b f(x) dx = \lim_{\epsilon \to 0} \int\limits_{a+\epsilon}^b f(x) dx$$
, если $x = a$ – точка разрыва;

б)
$$\int\limits_a^b f(x) dx = \lim_{\epsilon \to 0} \int\limits_a^{b-\epsilon} f(x) dx$$
, если $x = b$ – точка разрыва;

$$c)\int\limits_a^b f(x)dx=\lim_{\epsilon_1\to 0}\int\limits_a^{c-\epsilon_1} f(x)dx+\lim_{\epsilon_2\to 0}\int\limits_{c+\epsilon_2}^b f(x)dx,\ ecли\ x=c\ \ \text{- точки разрыва}.$$

Пример.
$$\int\limits_0^1 \frac{dx}{\sqrt{1-x^2}} = \lim_{\epsilon \to +0} \int\limits_0^{1-\epsilon} \frac{dx}{\sqrt{1-x^2}} = \lim_{\epsilon \to +0} \arcsin x \bigg|_0^{1-\epsilon} =$$

$$= \lim_{\epsilon \to +0} [\arcsin(1-\epsilon) - \arcsin 0] = \frac{\pi}{2} \; . \; \text{Интеграл сходится}.$$

Пример.
$$\int_{1}^{2} \frac{dx}{x \ln x} = \lim_{\epsilon \to +0} \int_{1+\epsilon}^{2} \frac{dx}{x \ln x} = \lim_{\epsilon \to +0} \ln \ln x \Big|_{1+\epsilon}^{2} = \ln \ln 2 - \lim_{\epsilon \to +0} \ln \left| \ln (1+\epsilon) \right| = \lim_{\epsilon \to +0} \ln \left| \ln$$

 $= \ln \ln 2 - \ln \ln 1$, предел не существует, т. е. данный интеграл расходится.

Пример.
$$\int_{-1}^{1} \frac{dx}{x^2} = 2 \int_{0}^{1} \frac{dx}{x^2} = 2 \lim_{\epsilon \to 0} \int_{\epsilon}^{1} \frac{dx}{x^2} = 2 \lim_{\epsilon \to +0} \left(-\frac{1}{x} \right) \Big|_{\epsilon}^{1} = \infty.$$
 Интеграл расходится.

Приложения определенного интеграла

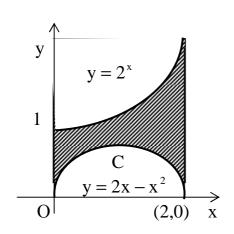
1. Площадь плоской фигуры.

На основании свойства 7 определенного интеграла (см. его геометрический смысл) площадь криволинейной трапеции вычисляется по формуле

$$S = \int_{0}^{b} f(x)dx$$
 или $S = \int_{a}^{b} ydx$.



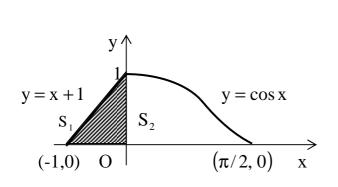
Пример. Вычислить площадь фигуры, ограниченной линиями



 $y = 2^x$; $y = 2x - x^2$; x = 0; x = 2. Для построения параболы $y = 2x - x^2$ приведем ее уравнение к каноническому виду: $(x-1)^2 = -(y-1)$. Вершина параболы: С (1, 1).

$$S = S_1 - S_2 = \int_0^2 \left[2^x - \left(2x - x^2 \right) \right] dx = \frac{3}{\ln 2} - \frac{4}{3}.$$

Пример. Вычислить площадь фигуры, ограниченной линиями

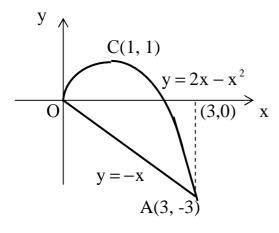


$$y = x + 1; \ y = \cos x; \ y = 0.$$

$$S = S_1 + S_2 = \int_{-1}^{0} (x + 1) dx + \int_{0}^{\pi/2} \cos x dx =$$

$$= \left[\frac{x^2}{2} + x \right]_{-1}^{0} + \sin x \Big|_{0}^{\pi/2} = 3/2.$$

Пример. Вычислить площадь фигуры, ограниченной линиями y = -x;



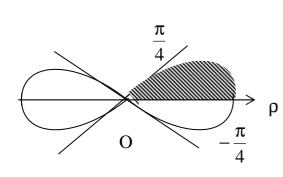
 $y = 2x - x^2$. Для определения пределов ин-

$$y = 2x - x$$
 . Для определения пределов интегрирования найдем точки пересечения параболы $y = 2x - x^2$ и прямой $y = -x$:
$$\begin{cases} y = 2x - x^2 & \text{прямой } y = -x \\ y = -x & \text{р} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - 3x = 0 \\ y = -x \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ y_1 = 0 \end{cases} \begin{cases} x_2 = 3 \\ y_2 = -3 \end{cases}$$

$$S = \int_{0}^{3} \left[\left(2x - x^{2} \right) - \left(-x \right) \right] dx = \int_{0}^{3} \left(3x - x^{2} \right) dx = \left(\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right) \Big|_{0}^{3} = \frac{27}{2} - 9 = 4,5.$$

Пример. Найти площадь фигуры, ограниченной лемнискатой Бернулли



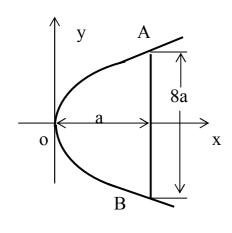
 $ho^2 = a^2 cos 2 \phi$. Формула для вычисления площади плоской фигуры в полярной

системе координат: $S = \frac{1}{2} \int_{\beta}^{\beta} \rho^2 d\phi$;

$$\frac{\pi}{4} \qquad \frac{1}{4}S = \frac{1}{2} \int_{0}^{\pi/4} a^{2} \cos 2\phi \, d\phi = \frac{a^{2}}{4}; S = a^{2}.$$

2. Площадь поверхности вращения, образованной вращением дуги линии y=f(x) от x=a до x=b вычисляется по формуле $Q=2\pi \int\limits_a^b f(x)\sqrt{1+\left(f_x^{\,\prime}\right)^2}\,dx$.

Пример. Размеры параболического зеркала АОВ указаны на чертеже. Найти



площадь поверхности этого зеркала. Уравнение параболы AOB в общем виде: y = 2px, точка A (a, 4a), $y^2 = 2px \Rightarrow 16a^2 = 2pa \Rightarrow p = 8a$.

$$A(a, +a), \quad y = 2px \rightarrow 10a = 2pa \rightarrow p = 0a.$$

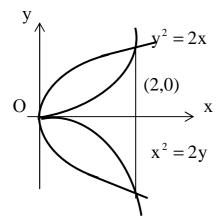
Уравнение AOB:
$$y^2 = 16ax \Rightarrow y = 4\sqrt{ax}$$
; $y' = 2\sqrt{\frac{a}{x}}$;

$$Q = 2\pi \int_{0}^{a} 4\sqrt{ax} \cdot \sqrt{1 + \frac{4a}{x}} dx = 8\pi \sqrt{a} \int_{0}^{a} \sqrt{x + 4a} dx =$$

$$= \frac{16}{3} \pi a^{2} (5\sqrt{5} - 8).$$
, образованного вращением кри

3. Объем тела вращения, образованного вращением криволинейной трапеции, ограниченной кривой y=f(x) и прямыми x=a до x=b, вокруг оси OX, вычисляется по формуле $V=\pi\int\limits_{a}^{b}f^{2}(x)dx$.

Пример . Найти объем тела, образованного вращением вокруг оси ОХ части плоскости, ограниченной параболами $y^2 = 2x$ и $x^2 = 2y$.



$$V = V_{(y^2 = 2x)} - V_{(x^2 = 2y)} = \pi \int_{0}^{2} 2x dx - \pi \int_{0}^{2} \frac{x^4}{4} dx = \frac{12\pi}{5}$$

Пример 7. Найти объем тела, образованного вращением одной «арки» циклоиды вокруг ее основания

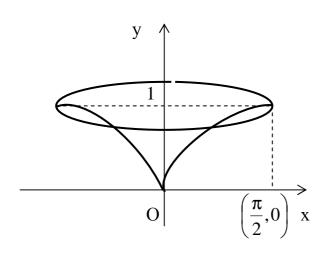
$$\begin{array}{c|c}
y & \\
\hline
O & 2\pi a & x
\end{array}$$

$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), \end{cases} 0 \le x \le 2\pi a \Rightarrow 0 \le t \le 2\pi.$$

$$V = \pi \int_{0}^{2\pi a} y^{2} dx = \pi \int_{0}^{2\pi} y^{2}(t) dx(t) = \pi \int_{0}^{2\pi} a^{3} (1 - \cos t)^{3} dt =$$

$$= \pi a^{3} \int_{0}^{2\pi} (1 - 3\cos t + 3\cos^{2} t - \cos^{3} t) dt = 5a^{3}\pi^{2}.$$

Пример. Найти объем тела, образованного вращением дуги синусоиды $y = \sin x$, заключенной между началом координат и ближайшей вершиной, вокругоси ОУ.



$$0 \le x \le \frac{\pi}{2}; \ 0 \le y \le 1;$$

Интегрируем по частям дважды:

$$V = \pi \int_{y_1}^{y_2} x^2(y) dy = \pi \int_{0}^{1} \arcsin^2 y dy =$$

$$= \pi \left[y \cdot \arcsin^2 y + 2\sqrt{1 - y^2} \arcsin y - 2y \right]_{0}^{1} =$$

$$= \frac{\pi a^3}{4} - 2\pi.$$

Упражнения

1. Вычислить определенные интегралы

a)
$$\int_{-1}^{2} x^{2} dx$$
; $\int_{0}^{\pi/2} \sin^{3} x dx$; B) $\int_{0}^{1} \frac{dx}{x^{2} + 4x + 5}$; $\int_{0}^{1} x^{2} \sqrt{1 - x^{2}} dx$; $\int_{0}^{1} x \cdot e^{-x} dx$.

2. Вычислить несобственные интегралы

a)
$$\int\limits_0^\infty \frac{\operatorname{arctgx}}{1+x^2} \mathrm{d}x$$
; б) $\int\limits_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2+4x+9}$; в) $\int\limits_{-\infty}^0 \frac{\mathrm{d}x}{1+x^2}$; г) $\int\limits_0^{\pi/4} \mathrm{ctgxdx}$; д) $\int\limits_{0.5}^1 \frac{x \mathrm{d}x}{\sqrt{1-x^2}}$.

3. Вычислить площади фигур, ограниченных данными линиями:

a)
$$y = e^x$$
; $y = e^{-x}$; $x = 1$. 6) $x = a \cos t$; $y = b \sin t$. B) $\rho = a \phi$, $(0 \le \phi \le 2\pi)$.

Otbet: a) $S = (e - 1)^2 / e$. 6) $S = \pi ab$. B) $S = 4\pi^3 a^2 / 3$.

4. Найти площадь сферического пояса: дуга окружности с центром в начале координат и радиусом г вращается вокруг оси ОХ, высота пояса Н.

Ответ: $Q = 2\pi r H$.

5. Вычислить объем тела, образованного вращением площадки, ограниченной линиями оси OX:

a)
$$y = \sin x$$
, $0 \le x \le \pi$, $y = 0$. Other: $V = \frac{\pi^2}{2}$.

б)
$$y = x \cdot e^x$$
, $x = 1$, $y = 0$. Ответ: $V = \pi \cdot (e^2 - 1)/4$.

B)
$$y = \arcsin x$$
, $x = 0$, $x = 1$, $y = 0$. Other: $V = \pi(\pi^2/4 - 2)$.

Контрольные работы

Вариант 1

1. Найти неопределенные интегралы

1)
$$\int 5\left(x^2 + \frac{1}{\sqrt{x}}\right)^2 dx$$
. 2) $\int \frac{dx}{\sqrt{9x^2 - 6x + 2}}$. 3) $\int \frac{\arctan^2 x}{1 + x^2} dx$. 4) $\int 4x \ln x dx$.

5)
$$\int \frac{(x-1)dx}{x^3 - x^2 + x}$$
. 6) $\int \frac{dx}{x^3 + x^2 + x + 1}$. 7) $\int \frac{\cos x \, dx}{1 + \cos x}$. 8) $\int \frac{dx}{1 + \sqrt{x+1}}$.

2. Вычислить определенные интегралы

1)
$$\int_{0}^{1} 1 + x dx$$
. 2) $\int_{1}^{e} 3x^{2} e^{x^{3}} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{0}^{\infty} x \sin x \, dx$$
. 2) $\int_{0}^{\pi/4} \frac{tg x \, dx}{1 - ctg^{2}x}$.

4. Построить фигуру, ограниченную следующими линиями $y=2^x$, $x=0,\ x=2$, и вычислить ее площадь.

Вариант 2

1. Найти неопределенные интегралы

1)
$$\int \frac{(\sqrt{x}-1)^2}{x} dx$$
. 2) $\int \frac{dx}{\sqrt{5-2x+x^2}}$. 3) $\int e^{2x} \cos e^{2x} dx$. 4) $\int \arctan 4x dx$.

5)
$$\int \frac{(1-x)dx}{x^3-2x^2+4x}$$
. 6) $\int \frac{dx}{x^3-x^2+4x}$. 7) $\int \frac{dx}{2\sin x + \cos x + 2}$. 8) $\int \frac{xdx}{\sqrt{x-1}}$.

2. Вычислить определенные интегралы

1)
$$\int_{-2}^{-1} \frac{dx}{(11+5x)^3}$$
. 2) $\int_{1}^{e} \frac{\ln^2 x}{x} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{dx}{x + x^3}$$
. 2) $\int_{1}^{2} \frac{dx}{x\sqrt{x^2 - 1}}$.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $\frac{x^2}{4} + \frac{y^2}{9} = 1$, y = 0, где $y \ge 0$, вокруг оси ОХ.

Вариант 3

1. Найти неопределенные интегралы

1)
$$\int \frac{x^4 + 2\sqrt{x^3}}{\sqrt{x}} dx$$
. 2)
$$\int \frac{dx}{\sqrt{x^2 - 4x + 7}}$$
. 3)
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$
. 4)
$$\int \arcsin 2x \ dx$$
.

5)
$$\int \frac{(x+1)dx}{x^3-x^2}$$
. 6) $\int \frac{dx}{x^3+3x^2+4x+2}$. 7) $\int \frac{dx}{\cos^2 x (3tg x+1)} dx$. 8) $\int \frac{dx}{x \sqrt{x+1}}$.

2. Вычислить определенные интегралы

1)
$$\int_{-13}^{2} \frac{dx}{\sqrt[5]{(3-x)^4}} dx \cdot 2 \int_{-13}^{2} 5x^4 e^{x^5} dx \cdot 2 dx$$

3. Вычислить несобственные интегралы

1)
$$\int_{-\infty}^{2} x e^{x} dx$$
. 2) $\int_{0}^{1/2} \frac{dx}{x \ln^{2} x}$.

4. Построить фигуру, ограниченную следующими линиями: xy = 4, x + y = 5, и вычислить ее площадь.

Вариант 4

1. Найти неопределенные интегралы

1)
$$\int \frac{(1-x)^3}{\sqrt{x}} dx$$
. 2) $\int \frac{dx}{\sqrt{x^2+8x}} dx$. 3) $\int \frac{dx}{\sqrt{1-x^2} \arcsin x}$. 4) $\int (x^2-1)\sin x dx$.

5)
$$\int \frac{(x+2x) dx}{x^3 + 2x^2 - 3x}$$
. 6) $\int \frac{x dx}{x^3 + x^2 - 2}$. 7) $\int \sin^4 x dx$. 8) $\int \frac{(x+1) dx}{x\sqrt{x-2}}$.

2. Вычислить определенные интегралы

1)
$$\int_{4}^{9} \frac{x-1}{\sqrt{x}+1} dx$$
. 2) $\int_{0}^{e-1} \ln(x+1) dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 4x + 9}$$
. 2) $\int_{-1}^{2} \frac{dx}{\sqrt[3]{(x - 1)^2}}$.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y^2 = 4x$, x = 3, вокруг оси OX.

Вариант 5

1. Найти неопределенные интегралы

1)
$$\int \frac{4x-7x^2}{\sqrt[3]{2}} dx \cdot 2$$
) $\int \frac{dx}{\sqrt{4x^2-4x-1}} \cdot 3$) $\int \frac{x dx}{x^3-4x^2-2x-4} \cdot 4$) $\int (x^2+1)\cos x dx \cdot 3$

5)
$$\int \frac{(x-1)dx}{x^3-6x^2+8x}$$
. 6) $\int \frac{dx}{x \ln^5 x}$. 7) $\int tg^3 x \, dx$. 8) $\int \frac{dx}{1+\sqrt{x}}$.

2. Вычислить определенные интегралы

1)
$$\int_{0}^{16} \frac{dx}{\sqrt{x+9}-\sqrt{x}}$$
. 2) $\int_{0}^{\pi/4} \frac{\arctan^{2}x}{1+x^{2}} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + x + 1}$$
. 2) $\int_{\pi/2}^{2\pi/3} \frac{\sin x \, dx}{\sqrt{1 + 2\cos x}} dx$.

4. Построить фигуру, ограниченную следующими линиями $y = x^2 + 1$, y = 3x, и вычислить ее площадь.

Вариант 6

1. Найти неопределенные интегралы

1)
$$\int \left(7\sqrt[5]{x^2} + 3\sqrt{x} - \frac{1}{x}\right) dx$$
. 2) $\int \frac{x dx}{\sqrt{x^2 + 10x + 5}}$. 3) $\int \frac{dx}{tg x \cos^2 x}$.

4)
$$\int (5-x)\sin 3x \, dx$$
. 5) $\int \frac{x^2 dx}{x^3 - x^2 - x + 1}$. 6) $\int \frac{(x+1)dx}{x^3 + 4x^2 + 5x}$.

7)
$$\int \frac{\mathrm{dx}}{\sin^6 x}.$$
 8)
$$\int \frac{\sqrt{x} \, \mathrm{dx}}{x(x+1)}.$$

2. Вычислить определенные интегралы

1)
$$\int_{0}^{1} (e^{x} - 1)^{4} e^{x} dx$$
. 2) $\int_{e}^{e^{3}} \frac{dx}{x \ln^{3} x}$.

3. Вычислить несобственные интегралы

1)
$$\int_{0}^{\infty} \frac{x^{2} dx}{(1+x^{3})^{2}}.$$
 2)
$$\int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}.$$

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y=x^2,\ y=\sqrt{x}$, вокруг оси ОХ.

Вариант 7

1. Найти неопределенные интегралы

1)
$$\int \left(3\sqrt[5]{x^2} - \frac{1}{x}\right)^2 dx$$
. 2) $\int \frac{(1+1)dx}{\sqrt{x^2 - 2x + 12}}$. 3) $\int x^2 e^{x^3} dx$. 4) $\int \left(\frac{1}{2} - x\right) \cos 4x dx$.

5)
$$\int \frac{x \, dx}{x^3 - x^2 - 4x + 4}$$
. 6) $\int \frac{\sqrt{x} dx}{x + 1}$. 7) $\int \frac{(x - 1) dx}{x^3 - 4x^2 + 5x}$. 8) $\int \frac{dx}{1 - \cos x}$.

2. Вычислить определенные интегралы

1)
$$\int_{0}^{2} \frac{3dx}{4-x}$$
. 2) $\int_{1}^{2} x \log_{2} x \, dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{1+x^2}}$$
. 2) $\int_{1}^{2} \frac{x^2 dx}{(x-1)\sqrt{x-1}}$.

4. Вычислить площадь фигуры, ограниченной линиями $y = x^3$, x = 0, y = 0.

Вариант 8

1. Найти неопределенные интегралы

1)
$$\int 105(x+1)^2 \sqrt{x} \, dx$$
. 2) $\int \frac{dx}{\sqrt{2+2x-x^2}}$. 3) $\int x^3 \cos x^4 \, dx$.
4) $\int 2 \arctan 4x \, dx$. 5) $\int \frac{(x^2+1)dx}{x^3+x^2-6x}$. 6) $\int \frac{dx}{x^3+3x^2+3x}$.
7) $\int \frac{dx}{1+\sin x}$. 8) $\int \frac{dx}{1+\sqrt[3]{x+1}}$.

2. Вычислить определенные интегралы

1)
$$\int_{0}^{1} \frac{x \, dx}{(x^2 + 1)^2}$$
. 2) $\int_{0}^{1} x e^{-x} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{\ln x}{x^3} dx$$
. 2)
$$\int_{\pi/4}^{\pi/3} \frac{dx}{\cos^2 x \sqrt{tgx - 1}}$$
.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y = e^x$, x = 0, y = 0, вокруг оси ОУ.

Вариант 9

1. Найти неопределенные интегралы

1)
$$\int (4\sqrt[3]{x} - 5x\sqrt{x}) dx$$
. 2) $\int \frac{x dx}{\sqrt{5 - 4x - x^2}}$. 3) $\int \frac{x^3 \ln x^2}{2} dx$.

4)
$$\int x \sin(x^2 - 5) dx$$
. 5) $\int \frac{(x^2 - 1) dx}{x^3 - x^2 - 6x}$. 6) $\int \frac{(x - 3) dx}{x^3 - 3x^2 + 3}$.

7)
$$\int \frac{(1-\cos x \, dx)}{\sqrt{x}-\sqrt[3]{x}}.$$
 8)
$$\int \frac{\sqrt{x} \, dx}{\sqrt{x}-\sqrt[3]{x}}.$$

2. Вычислить определенные интегралы

1)
$$\int_{1}^{e} \frac{dx}{x\sqrt{1-\ln^2 x}}$$
. 2) $\int_{0}^{\pi/2} x \cos x \, dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{0}^{\infty} x e^{-x^{2}} dx$$
. 2) $\int_{0}^{1} \frac{x dx}{\sqrt{1-x^{2}}}$.

4. Вычислить площадь фигуры, ограниченной линиями $y = x^3$, $y^2 = x$.

Вариант 10

1. Найти неопределенные интегралы

1)
$$\int \left(\frac{5}{x} - 7\sqrt[4]{x^3} + 2\right) dx$$
. 2) $\int \frac{(x-1)dx}{\sqrt{25 + 6x - x^2}}$. 3) $\int \frac{\arccos^4 x}{\sqrt{1 - x^2}} dx$.

4)
$$\int (3x-5)\sin\frac{x}{2}dx$$
. 5) $\int \frac{(x^2+1)dx}{x^3-x}$. 6) $\int \frac{(x^2-3)dx}{x^3+6x^2+10x}$.

7)
$$\int \frac{(1+\sin x)dx}{1+\cos x}.$$
 8)
$$\int \frac{dx}{\sqrt[3]{x}(\sqrt[3]{x}-1)}.$$

2. Вычислить определенные интегралы

1)
$$\int_{1}^{e} \frac{1 + \ln x}{x} dx$$
. 2) $\int_{0}^{1} 20x^{3} e^{x^{4}} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{x^2 dx}{1 + x^6}$$
. 2) $\int_{2}^{6} \frac{dx}{\sqrt[3]{(4 - x)^2}}$.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y = e^x$, x = 0, y = 0, x = 1, вокруг оси OX.

Вариант 11

1. Найти неопределенные интегралы

1)
$$\int \frac{4x-7x\sqrt[3]{x}+2}{x} dx$$
. 2) $\int \frac{(2x+1)dx}{\sqrt{24-2x-x^2}}$. 3) $\int \frac{ctg^3x+1}{\sin^2x} dx$.

4)
$$\int \left(\frac{x}{3} + 4\right) \cos \frac{4}{9} x \, dx$$
. 5) $\int \frac{(x+3)}{x^3 - 4x}$. 6) $\int \cos^2 3x \, dx$.

7)
$$\int \frac{x \, dx}{x^3 - x^2 + 2x - 2}$$
. 8) $\int \frac{dx}{\sqrt{x} + \sqrt[4]{x}}$.

2. Вычислить определенные интегралы

1)
$$\int_{1}^{2} \frac{e^{1/x}}{x^2} dx$$
. 2) $\int_{0}^{4} \sqrt{16-x^2} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{2}^{\infty} \frac{dx}{x\sqrt{x^2-1}}$$
. 2)
$$\int_{1}^{e} \frac{dx}{x\sqrt{\ln x}}$$
.

4. Вычислить площадь фигуры, ограниченной линиями xy = 4, x + y = 8.

Вариант 12

1. Найти неопределенные интегралы

1)
$$\int \left(\frac{5}{\sqrt{x}} + \frac{2\sqrt{x}}{\sqrt{x^3}} - 6x^2\right) dx$$
. 2) $\int \frac{(2-4x)dx}{\sqrt{13-6x-x^2}}$. 3) $\int \sin x \, 5^{\cos x} \, dx$.

4)
$$\int \frac{x}{5} \arctan x \, dx$$
. 5) $\int \frac{(x-4)dx}{x^3-9x}$. 6) $\int \sin^2 3x \, dx$.

7)
$$\int \frac{x^2 dx}{x^3 - 2x^2 + 3x - 6}$$
. 8) $\int \frac{dx}{x^2 \sqrt{x^2 + 4}}$.

2. Вычислить определенные интегралы

1)
$$\int_{1}^{e^{3}} \frac{dx}{x\sqrt{1+\ln x}}.$$
 2)
$$\int_{1}^{2} (2x-1)e^{(x^{2}-x+1)}dx.$$

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{dx}{(1+x^2)\operatorname{arctg} x}.$$
 2)
$$\int_{0}^{1} \frac{1+\sqrt[4]{x}}{x+\sqrt{x}}.$$

4. Вычислить объем тела образованного вращением фигуры, ограниченной линиями $y = x^3$, y = 1, x = 0, вокруг оси OX.

Вариант 13

1. Найти определенные интегралы

1)
$$\int \left(\frac{11}{6}\sqrt{x^5} - \frac{\sqrt[3]{x}}{x} + 5\right) dx$$
. 2) $\int \frac{(1-2x)dx}{\sqrt{8x-x^2-12}}$. 3) $\int \frac{x^2dx}{\sqrt{9-x^2}}$.

4)
$$\int \cos^5 2x \sin 2x \, dx$$
. 5) $\int 4 \operatorname{arcctg} 4x \, dx$. 6) $\int \frac{(x+5)dx}{x^3 - 16x}$.

7)
$$\int \frac{dx}{x^3 + 2x^2 + 2x + 4}$$
. 8) $\int (tg^2x + tg^4x)dx$.

2. Вычислить определенные интегралы

1)
$$\int_{2}^{3} \frac{dx}{2x^2 + 3x - 2}$$
. 2) $\int_{0}^{\pi/4} (x + 1) \sin 2x \, dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{-\infty}^{0} \frac{e^{3x} dx}{e^{3x} + 1}$$
. 2) $\int_{-1}^{1} \frac{\arccos^{2} x}{\sqrt{1 - x^{2}}} dx$.

4. Вычислить площадь фигуры, ограниченной линиями $y = -x^2$, x + y + 2 = 0.

Вариант 14

1. Найти неопределенные интегралы

1)
$$\int \left(3x^2 - 7x\sqrt[3]{x} - \frac{5}{x}\right) dx$$
. 2) $\int \frac{x dx}{\sqrt{6x - x^2 - 8}}$. 3) $\int \frac{dx}{x^2 \sqrt{x^2 - 16}}$.

4)
$$\int \frac{(x+2)dx}{x^3 - x^2 - x + 1}$$
. 5) $\int \cos 5x e^{5x} dx$. 6) $\int 4x \arcsin 3x dx$.

7)
$$\int \frac{x \, dx}{x^3 + x^2 + 4x + 4}$$
. 8) $\int \cos x \sin 3x \, dx$.

8)
$$\int \cos x \sin 3x \, dx$$

2. Вычислить определенные интегралы

1)
$$\int_{0}^{1} \frac{dx}{x^2 + 4x + 5}$$
. 2) $\int_{1}^{e} \frac{\ln \sqrt{x}}{\sqrt{x}} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{0}^{\infty} \frac{\operatorname{arctg} x}{x^2 + 1} dx$$
. 2) $\int_{1}^{2} \frac{x - 2}{\sqrt{x - 1}} dx$.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y = x^3, y = 1, x = 0$, вокруг оси ОХ.

Вариант 15

1. Найти неопределенные интегралы

1)
$$\int \left(14\sqrt[5]{x^2} - \frac{16}{\sqrt{3x}} + \frac{1}{2x}\right) dx \cdot 2$$
) $\int \frac{(7-4x)dx}{\sqrt{20+8x-x^2}} \cdot 3$) $\int \frac{x^2dx}{(x^3+2)^2} \cdot 3$

4)
$$\int (4x^2 - 3)\cos 5x \, dx$$

4)
$$\int (4x^2 - 3)\cos 5x \, dx$$
. 5) $\int \frac{x \, dx}{x^3 - x^2 - x - 1}$. 6) $\int \frac{\sqrt{1 + x^2} \, dx}{x^4}$.

7)
$$\int \frac{(x^2+1)dx}{x^3-x^2+4x-4}$$
. 8) $\int \cos 2x \cos 3x \, dx$.

8)
$$\int \cos 2x \cos 3x \, dx.$$

2. Вычислить определенные интегралы

1)
$$\int_{1}^{2} \frac{dx}{x + x^{2}}$$
. 2) $\int_{0}^{1} \frac{\arcsin^{3} x}{\sqrt{1 - x^{2}}} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x+1}}$$
. 2) $\int \frac{\cos^3 x}{\sin^2 x} dx$.

4. Вычислить площадь фигуры, ограниченной линиями $y = \ln x$, $y = 2 \ln x$, x = e.

Вариант 16

1. Найти неопределенные интегралы

1)
$$\int \left(\frac{4}{x} - \frac{4}{\sqrt[5]{x}} + 5x\sqrt{x}\right) dx$$
. 2) $\int \frac{(3-2x)dx}{\sqrt{21+4x-x^2}}$. 3) $\int \frac{x^5dx}{\sqrt{x^6+5}}$.

4)
$$\int (1-x^2)\sin 2x \ dx$$
. 5) $\int \frac{x \ dx}{2x^3+3x^2-1}$. 6) $\int \frac{\sqrt{25-x^2}}{x^2} dx$.

7)
$$\int \frac{(x+1)dx}{x^3+4x+5x}$$
. 8) $\int \sin 2x \sin 5x \, dx$.

2. Вычислить определенные интегралы

1)
$$\int_{1}^{2} e^{x} dx$$
. 2) $\int_{0}^{\pi/2} \sin^{3} x \cos x dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{x^2 dx}{1+x^6}$$
. 2) $\int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}$.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $x^2 - y^2 = 4$, y = 2, y = 0, вокруг оси ОХ.

Вариант 17

1. Найти неопределенные интегралы

1)
$$\int \frac{4(\sqrt[3]{x}+4)^2}{\sqrt[3]{x}} dx$$
. 2) $\int \frac{dx}{\sqrt{x^2-2x-24}}$. 3) $\int \frac{3\sqrt{\ln x}}{x} dx$.

4)
$$\int (4x^2 + 3x)\cos\frac{x}{2}dx$$
. 5) $\int \frac{x dx}{x^3 - 7x + 6}$. 6) $\int \frac{x^2 - 2x + 3}{x^3 + 2x}dx$.

7)
$$\int \frac{\mathrm{dx}}{\cos 2x}.$$
 8)
$$\int \frac{\mathrm{dx}}{\sqrt{(36+x^2)^3}}.$$

2. Вычислить определенные интегралы

1)
$$\int_{0}^{2} (3x^{2} - 1) dx$$
. 2) $\int_{0}^{1} \frac{\sqrt{\arctan x}}{1 + x^{2}} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{dx}{x + 4x^{2}}$$
. 2) $\int_{0}^{1} \frac{dx}{\sqrt[4]{x} + \sqrt{x}}$.

4. Вычислить площадь фигуры, ограниченной линиями $y = e^x$, $y = e^{2x}$, $x = \ln 3$.

Вариант 18

1. Найти неопределенные интегралы

1)
$$\int \left(\sqrt[3]{x} - \frac{2}{\sqrt{x}} \right)^2 dx$$
. 2) $\int \frac{x dx}{\sqrt{x^2 + 10x + 16}}$. 3) $\int \frac{e^{5x} dx}{5 + e^{5x}}$.

4)
$$\int (2x - 8x^2 \cos 2x \, dx)$$
. 5) $\int \frac{(x-1)^2 dx}{x^3 - x^2 - 2x}$. 6) $\int \frac{\sin^3 x}{\cos x} dx$.

7)
$$\int \frac{\sqrt{(x^2 + x - 1)}}{x^3 + 3x} dx$$
. 8) $\int \frac{\sqrt{(9 - x^2)^3}}{x^6} dx$.

2. Вычислить определенные интегралы

1)
$$\int_{e}^{e^2} \frac{dx}{x \ln^2 x}$$
. 2)
$$\int_{0}^{1} \frac{\cos(\arcsin x)}{\sqrt{1-x^2}} dx$$
.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{\mathrm{d}x}{(1+x)\sqrt{x}} \cdot 2 \int_{0}^{3} \frac{\mathrm{d}x}{(x-2)^{2}} \cdot \frac{\mathrm{d}x}{(x-2)^{2$$

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями, $y = \frac{4}{x}$, x = 1, x = 4, y = 0 вокруг оси ОХ.

38

Вариант 19

1. Найти неопределенные интегралы

1)
$$\int 35 \left(2\sqrt{x} - \frac{1}{\sqrt[3]{x}}\right)^3 dx$$
. 2) $\int \frac{(x-1)dx}{\sqrt{x^2 - 8x + 13}}$. 3) $\int \frac{dx}{x\sqrt{1+x^2}}$.

$$3) \int \frac{\mathrm{dx}}{x\sqrt{1+x^2}}.$$

4)
$$\int \frac{7 + \sin \sqrt{x}}{\sqrt{x}} dx$$
. 5) $\int (x+4)e^{x/2} dx$. 6) $\int \frac{(x+5)dx}{2x^3 + x^2}$.

5)
$$\int (x+4)e^{x/2}dx$$

$$6) \int \frac{(x+5)dx}{2x^3+x^2}.$$

7)
$$\int \frac{x^2 + 2x - 1}{x^4 + 4x} dx$$
. 8) $\int \frac{\cos^3 x}{\sin^4 x} dx$.

$$8) \int \frac{\cos^3 x}{\sin^4 x} dx .$$

2. Вычислить определенные интегралы

1)
$$\int_{0}^{\pi/2} \frac{x \, dx}{\cos^2 x^2}$$
. 2) $\int_{0}^{1} \arcsin x \, dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{1}^{\infty} \frac{\ln x}{x} dx$$
. 2) $\int_{-2}^{2} \frac{x dx}{x^2 - 1}$.

4. Вычислить площадь фигуры, ограниченной линиями $y = e^x$, y = 1 - x, x = 1.

Вариант 20

1. Найти неопределенные интегралы

1)
$$\int \left(\frac{1}{\sqrt{x}} + 5\right)^3 dx$$
. 2) $\int \frac{(2x+7)dx}{\sqrt{x^2+10x+9}}$. 3) $\int \frac{3\sqrt{tgx}-5}{\cos^2 x} dx$.

4)
$$\int (5-2x)e^{4x}dx$$
. 5) $\int \frac{dx}{x^3-x^2-20x}$. 6) $\int \frac{(x^2-x-1)dx}{x^3+5x}$.

7)
$$\int \frac{\mathrm{dx}}{\cos^4 x} \,. \qquad \qquad 8) \int \frac{\mathrm{dx}}{\sqrt{\left(x^2 - 4\right)^3}} \,.$$

2. Вычислить определенные интегралы

1)
$$\int_{4}^{9} \frac{\sqrt{x} dx}{\sqrt{x} - 1}.$$
 2)
$$\int_{2}^{\sqrt[4]{e}} \frac{dx}{x\sqrt{\ln x}}.$$

3. Вычислить несобственные интегралы

1)
$$\int_{0}^{\infty} \frac{dx}{(1+x)^2}$$
. 2) $\int_{0}^{1} x^3 \ln x \, dx$.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y = \frac{4}{x}$, x = 1, x = 4, y = 0, вокруг оси ОХ.

Вариант 21

1. Найти неопределенные интегралы

1)
$$\int \left(3x - \frac{2}{x}\right)^2 dx$$
. 2) $\int \frac{(3x+4)dx}{\sqrt{x^2 - 2x + 14}}$. 3) $\int \frac{\sin 4x dx}{2 - \cos 4x}$.

4)
$$\int (x^2 - 1)e^{\pi/3} dx$$
. 5) $\int \frac{dx}{x^3 - x^2 - 6x}$. 6) $\int \frac{(x^2 - 2)dx}{x^3 - x^2 - 6x}$.

7)
$$\int \sin^2 x \cos^2 x \, dx$$
. 8) $x^2 \sqrt{4 - x^2} \, dx$.

2. Вычислить определенные интегралы

1)
$$\int_{0}^{1} \frac{\sqrt{x} dx}{1+x}$$
. 2) $\int_{0}^{\pi/4} \frac{tg x dx}{\cos^{2} x}$.

3. Вычислить несобственные интегралы

1)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 5}$$
. 2) $\int_{0}^{1} x^2 \ln x \, dx$.

4. Вычислить площадь фигуры, ограниченной линиями $y = (x + 1)^2$, y = 0, x = 0.

40

Вариант 22

1. Найти неопределенные интегралы

1)
$$\int 7 \left(x^3 - \frac{1}{x^4}\right)^2 dx$$
. 2) $\int \frac{(5-2x)dx}{\sqrt{x^2 + 8x + 17}}$. 3) $\int \frac{8\cos 2x \ dx}{\sqrt{8 + 4\sin 2x}}$.

4)
$$\int (2x^2 + x)e^x dx$$
. 5) $\int \frac{dx}{x^3 - x^2 - 2x}$. 6) $\int \frac{(x^2 - 2)dx}{x^3 - x^2 + 2x - 2}$.

7)
$$\int \sin^3 x \cos^2 x \, dx$$
. 8) $\int \frac{e^{2x} \, dx}{\sqrt[4]{e^x + 1}}$.

2. Вычислить определенные интегралы

1)
$$\int_{3}^{8} \frac{x \, dx}{\sqrt{1+x}}$$
. 2) $\int_{0}^{\pi/4} \frac{\sqrt{tgx} \, dx}{\sin^2 x}$.

3. Вычислить несобственные интегралы

1)
$$\int_{0}^{\infty} \frac{dx}{(4+x)^{3}}.$$
 2)
$$\int_{1/2}^{1} \frac{x^{3} dx}{\sqrt{1-x^{2}}}.$$

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y = \frac{1}{1 + v^2}$, x = 1, x = -1, y = 0, вокруг оси ОХ.

Вариант 23

1. Найти неопределенные интегралы

1)
$$\int \frac{3(x-1)^2}{x\sqrt{x}} dx$$
. 2) $\int \frac{dx}{x^3 - 2x^2 - x + 2}$. 3) $\int \frac{3dx}{x\sqrt[4]{\ln x - 4}}$.

4)
$$\int (1-x)^2 e^{x/2} dx$$
. 5) $\int \frac{(x^2+4)dx}{x^3-2x^2+2x-4}$. 6) $\int \frac{(8-5x)dx}{\sqrt{x^2-14x+9}}$.

7)
$$\cos^3 x \, dx$$
. 8) $\int \frac{\sqrt{1+\ln x}}{x \ln x} dx$.

2. Вычислить определенные интегралы

1)
$$\int_{1}^{2} \frac{dx}{x + x^{3}}$$
. 2) $\int_{0}^{\frac{\sqrt{2}}{2}} \frac{\cos x \, dx}{4 + \sin^{2} x}$.

3. Вычислить несобственные интегралы

1)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 5}$$
. 2) $\int_{0}^{1} \frac{\arcsin x}{\sqrt{1 - x^2}} dx$.

4. Вычислить площадь фигуры, ограниченной линиями $y = x^2$, x + y = 2.

Вариант 24

1. Найти неопределенные интегралы

1)
$$\int \frac{9(2x^2+5)^2}{2\sqrt{x}}$$
. 2) $\int \frac{xdx}{\sqrt{16x^2-8x+2}}$. 3) $\int \frac{e^xdx}{e^x\sqrt{1+e^x}}$.

4)
$$\int \frac{15(\arcsin 5x + 2)^2}{\sqrt{1 - 25x^2}} dx$$
. 5) $\int \frac{dx}{x^3 - 2x^2 - 3x}$. 6) $\int tg^4 x dx$.

7)
$$\int (3x^2 - 2x + 1)\sin\frac{x}{4}dx$$
. 8) $\int \frac{(x-1)dx}{x^3 + 2x^2 + x + 2}$.

2.Вычислить определенные интегралы

1)
$$\int_{0}^{1/2} \frac{x^3 dx}{x^2 - 3x + 2}$$
. 2) $\int_{\pi/2}^{\pi} \frac{\sin x dx}{5 - 2\cos x}$.

3. Вычислить несобственные интегралы

1)
$$\int_{2}^{\infty} \frac{dx}{x^3 \sqrt{x^2 - 1}}$$
. 2) $\int_{0}^{\pi/2} ctg \ x \ dx$.

4. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y = \frac{1}{1+x}$, x = 1, x = -1, y = 0, вокруг оси ОХ.

42

Вариант 25

1. Найти неопределенные интегралы

1)
$$\int \frac{\sqrt[3]{x^7} - x\sqrt[3]{x} + 2x^2}{x^2\sqrt[3]{x}}$$
. 2) $\int \frac{(x+3)dx}{\sqrt{x^2 + 2x + 2}}$. 3) $\int \frac{x^3dx}{\sqrt{x^8 + 4}}$.

4)
$$\int (4x - 9x^2) \sin 2x \, dx$$
. 5) $\int \sin^5 x \, dx$. 6) $\int \frac{x \, dx}{\sqrt{1 + 2x}}$.

7)
$$\int \frac{x dx}{2x^3 - 9x^2 - 17x - 6}$$
. $8 \int \frac{(x - 4) dx}{x^3 - x^2 + 3x - 3}$.

2. Вычислить определенные интегралы

1)
$$\int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} dx$$
. 2) $\int_{1}^{e} \frac{(\ln x - 1)^2}{x} dx$.

3. Вычислить несобственные интегралы

1)
$$\int_{0}^{\infty} \frac{x \, dx}{(1+x)^3}.$$
 2)
$$\int_{0}^{1} \frac{\arctan \sqrt{x}}{\sqrt{x}(1+x)} dx.$$

4. Вычислить площадь фигуры, ограниченной линиями y = x + 1, $y = \cos x$, y = 0.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Обыкновенным дифференциальным уравнением (ДУ) называется уравнение вида $F(x, y, y', ..., y^{(n)}) = 0$, где F – известная функция, x – независимая переменная, y = y(x) – неизвестная функция.

Порядком дифференциального уравнения называется наивысший порядок производной, входящей в данное уравнение.

Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество.

Решить уравнение – значит найти все его решения.

Если искомая неизвестная функция зависит от одной переменной, то ДУ называют обыкновенным; в противном случае — ДУ в частных производных. Далее будем рассматривать только обыкновенные ДУ.

Процесс отыскания решения ДУ называется **интегрированием**, а график решения ДУ – **интегральной кривой**.

Дифференциальные уравнения первого порядка

Уравнение вида F(x,y,y')=0 называется ДУ первого порядка. Левая часть этого уравнения содержит независимую переменную x, неизвестную функцию y(x), ее производную y'(x). Если это уравнение решить относительно y', то получим **нормальную форму** ДУ первого порядка: y'=f(x,y). Интегрируем его и находим решения.

Пример. Условие, что при $x = x_0$ функция у должна быть равна заданному числу y_0 , т. е. $y = y_0$, называется **начальным условием**. Начальное условие записывается в виде $y(x_0) = y_0$ или $y \bigg|_{x = x_0} = y_0$.

ДУ 1-го порядка вместе с начальными условиями называется начальной задачей

или задачей Коши:
$$\begin{cases} y' = f(x, y) \\ y| = y_0 \\ x = x_0 \end{cases} .$$

Общим решением ДУ первого порядка называется функция y = f(x,c), содержащая одну произвольную постоянную и удовлетворяющую условиям

- 1. Функция f(x, c) является решением ДУ при каждом фиксированном значении c.
- 2. Каково бы ни было начальное условие, можно найти такое значение постоянной $\mathbf{c} = \mathbf{c}_0$, что функция $\mathbf{y} = \mathbf{f}(\mathbf{x}, \mathbf{C}_0)$ будет удовлетворять данному начальному условию.

Частным решением ДУ первого порядка называется любая функция $y = f(x, c_0)$, полученная из общего решения y = f(x, c) при конкретном значении постоянной $c = c_0$.

Уравнения, интегрируемые в квадратурах

Рассмотрим ДУ $y' = \frac{\sin x}{x}$. Его решением является функция $y = \int \frac{\sin x}{x} dx + C$. Но этот интеграл относится к разряду «неберущихся», т.е. у функции $f(x) = \frac{\sin x}{x}$ нет первообразной в классе элементарных функций. Иначе говоря, первообразная существует и даже задается табличным образом, т.е. ее значение можно вычислить приближенно. Но ведь и для функции $y = \sin x$ точные значения можно вычислить только в некоторых точках $(0, \pi/6, \pi)$. Но если считают, что функция $f(x) = \sin x$ является решением ДУ $y' = \cos x$, то разумно предположить, что и функция $f(x) = \frac{\sin x}{x}$ является решением ДУ $y' = \frac{\sin x}{x}$. Ведь для уравнения $x^2 - 2 = 0$ ре-

шениями являются числа $x = \pm \sqrt{2} = \pm 1,414\ 213\ 56...$, т. е. точное решение тоже выписать невозможно.

Исходя из этих соображений было введено следующее определение.

Определение. ДУ называется интегрируемым в квадратурах, если его решение может быть представлено в виде конечного числа интегралов от известных функций.

Далеко не все ДУ даже 1-го порядка интегрируемы в квадратурах. Еще сложнее обстоит дело с ДУ высших порядков. Ниже будут рассмотрены пять типов ДУ 1-го порядка, интегрируемых в квадратурах, и некоторые ДУ высших порядков, которые сводятся к ДУ 1-го порядка.

С геометрической точки зрения y = f(x, c) есть семейство интегральных кривых на плоскости ХОУ; частное решение $y = f(x, c_0)$ одна кривая из этого семейства, проходящая через точку (x_0, y_0) .

Задача отыскания решения ДУ 1-го порядка, удовлетворяющего заданному начальному условию, называется задачей Коши.

Уравнения с разделяющимися переменными

Дифференциальное уравнение первого порядка P(x)dx+Q(y)dy=0 называется уравнением с разделяющимися переменными. В нем одно слагаемое зависит только от x, а другое — только от y. Дифференциальные уравнения вида $P(x)_1\cdot Q_1(y)dx+P(x)\cdot Q_2(y)dy=0$ приводятся к ДУ с разделяющимися переменными.

Пример 1. Решить уравнение x dx - y dy = 0.

Это уравнение с разделяющимися переменными. Проинтегрируем его почленно:

$$\int x \ dx - \int y \ dy = c_1 \quad \text{или} \quad \frac{x^2}{2} - \frac{y^2}{2} = c_1 \,. \ \text{Обозначим} \ 2c_1 = c \,, \ \text{тогда} \ x^2 - y^2 = c \,- \ \text{общий}$$

интеграл дифференциального уравнения. Выразим у: $y = \pm \sqrt{x^2 - c}$, получим общее решение ДУ.

Пример 2. Решить уравнение: (y + xy)dx + (x - xy)dy = 0.

Это ДУ, приводящееся к уравнению с разделяющимися переменными. Преобразуем левую часть уравнения: y(1+x)dx+x(1-y)dy=0, разделив обе части уравнения:

нения на
$$xy \neq 0$$
: $\frac{1+x}{x}dx + \frac{1-y}{y}dy = 0$. Проинтегрируем почленно:

$$\int \frac{1+x}{x} dx + \int \frac{1-y}{y} dy = c$$
, получим $\ln |x| + x + \ln y - y = c$. Решением данного ДУ яв-

ляется общий интеграл $\ln |xy| + x - y = c$. Это уравнение имеет решения x = 0, y = 0, которые не входят в общий интеграл. Они являются **особыми решениями** ДУ.

Однородные уравнения

Уравнение вида $y' = \phi \left(\frac{y}{x} \right)$ называется однородным. Однородные уравнения преобразуются к уравнениям с разделяющимися переменными при помощи подстановки y/x = u или y = xu, тогда y' = u + xu'.

Пример 1. Решить уравнение $(x^2 - y^2)dx + 2xy \cdot dy = 0$.

Данное уравнение однородное, т. к. все одночлены входят в уравнение во второй степени. Разделим почленно все члены уравнения на x^2 , получим

$$\left(1 - \frac{y^2}{x^2}\right) dx + 2\left(\frac{y}{x}\right) dy = 0, \\ \left(1 - \frac{y^2}{x^2}\right) + 2\left(\frac{y}{x}\right) \frac{dy}{dx} = 0, \\ \left(1 - \frac{y^2}{x^2}\right) + 2\left(\frac{y}{x}\right) y' = 0.$$

Произведем замену переменной: y/x=u, $y=u\cdot x$, y'=u'x+u,

 $(1-u^2)+2u(u'x+u)=0,\ 1+u^2+2uu'x=0$. Это уравнение с разделяющимися пере-

менными:
$$\frac{dx}{x} + \frac{2u\ du}{1+u^2} = 0$$
. Интегрируем $\int \frac{dx}{x} + \int \frac{2u\ du}{1+u^2} = c$,

 $\ln |x| + \ln |1 + u^2| = c$, $\ln |x| (1 + u^2) = c$, $e^c = |x| (1 + u^2)$. Обозначим

 $e^{c}=c_{1}^{}$ и, заменяя u на y/x, получим общий интеграл уравнения $x^{2}+y^{2}=c_{1}x$.

Пример 2. Решить уравнение (x + y - 2)dx - (x - y + 4)dy = 0. Данное уравнение приводится к однородному. Приведем его к виду $y' = \frac{x + y - 2}{x - y + 4}$. Пусть x = u + a,

y = v + b, тогда dx = du, dy = dv. Подставим в уравнение и получим

$$y' = \frac{dy}{dx} = \frac{du}{dv} = \frac{u+a+v+b-2}{u+a-v-b+4} = \frac{u+v+(a+b-2)}{u-v+(a-b+4)}$$

Подберем a и b так, чтобы выполнялось $\begin{cases} a+b-2=0,\\ a-b+4. \end{cases}$

Решая систему, получим a=3, b=-1. Заданное уравнение примет вид $\frac{dv}{du}=\frac{u+v}{u-v}$, где u=x-3, v=y+1. Оно однородное. Введем замену $v=t\cdot u, v'=t'u+t$, подставим в уравнение и получим

$$t'u + t = \frac{u + tu}{u - tu},$$
 $t'u = \frac{1 + t}{1 - t} - t,$ $t'u = \frac{1 + t^2}{1 - t},$

$$\frac{(1-t)dt}{1+t^2} = \int \frac{du}{u}, \qquad \int \frac{dt}{1+t^2} - \int \frac{tdt}{1+t^2} = \int \frac{du}{u}, \qquad \arctan - \frac{1}{2} \ln(1+t^2) = \ln|u| + \ln c,$$

$$\arctan = \ln c \left| u \sqrt{1 + t^2} \right|, \quad \arctan \frac{y+1}{x-3} = \ln c \sqrt{(x-3)^2 + (y+1)^2}.$$

Линейные уравнения

Дифференциальное уравнение называется **линейным**, если его можно записать в виде y'+p(x)y=g(x), где p(x) и g(x) - заданные функции, в том числе и постоянные. Особенность ДУ: искомая функция и ее производная входят в уравнение в первой степени в виде слагаемых. Рассмотрим решение линейных ДУ первой порядка — метод Бернулли.

Метод Бернулли заключается в том, что ДУ решается с помощью подстановки $y = u \cdot v$, где u = u(x), y' = u'v + uv'.

Пример. Решить уравнение y' + 2xy = 2x.

Полагаем $y=u\cdot v,\ y'=u'v+uv'.$ Тогда $u'v+uv'+2xy\cdot uv=2x$. Перегруппируем слагаемые $u'v+(uv'+2xuv)=2x,\ u'v+u(v'+2xv)=2x$. Приравняем к нулю выражение, стоящее в скобках, и решим уравнение v'+2xv=0. Оно с разделяющимися переменными: $\frac{dv}{v}=-2x\ dx,\ v=e^{-x^2}$.

Теперь решим уравнение $u'v + u \cdot 0 = 2x$, $u'e^{-x^2} = 2x$,

$$\frac{du}{dx} = 2x \cdot e^{x^2}$$
, $du = \int 2x \cdot e^{x^2} dx$, $u = e^{x^2} + C$.

Общее решение данного уравнения: $y = uv = (e^{x^2} + c) \cdot e^{-x^2} = 1 + c \cdot e^{-x^2}$.

Уравнение Бернулли

Уравнение вида $y' + P(x)y = G(x)y^n$, $n \in R$, $n \ne 0$, $n \ne 1$ называется уравнением Бернулли. Это уравнение можно решать как линейное, используя замену y = uv, а также можно свести его к линейному следующим образом: разделим обе части

уравнения на
$$y^n \neq 0$$
. Получим $\frac{y'}{y^n} + \frac{P(x)}{y^{n-1}} = G(x)$. Обозначим $\frac{1}{y^{n-1}} = t$, тогда $y^{1-n} = t$; $(1-n)y^{-n}y' = t'$, $\frac{(1-n)y'}{y^n} = t'$; $\frac{y'}{y^n} = \frac{dt}{(1-n)dx}$.

Данное уравнение примет вид $\frac{1}{1-n}t'+P(x)t=G(x)$. Последнее уравнение линейное относительно t. Решение его известно.

Уравнение в полных дифференциалах

Уравнение вида P(x, y) dx + Q(x, y) dy = 0 называется уравнением в полных дифференциалах, если его левая часть P(x, y) dx + Q(x, y) dy есть полный диффе-

ренциал некоторой функции f(x, y), т.е. P(x, y)dx + Q(x, y)dy = df(x, y), и его решение имеет вид f(x, y) = C.

Для того чтобы выражение P(x,y)dx + Q(x,y)dy было полным дифференциалом функции двух переменных f(x,y), необходимо и достаточно, чтобы выполнялось условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, причем P(x,y), Q(x,y) и их частные производные - непрерывные функции своих аргументов в некоторой области Д.

Пример.
$$(3y^2 - x)dx + (2y^3 + 6xy)dy = 0$$
.

Покажем, что данное уравнение является уравнением в полных дифференциалах. Учитывая, что $\frac{df}{dx} = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ и полагая, что $P(x, y) = \frac{\partial f}{\partial x}$, $Q(x, y) = \frac{\partial f}{\partial y}$, получим $P(x, y) = 3y^2 - x$, $Q(x, y) = 2y^3 + 6xy$.

$$\frac{\partial P}{\partial y} = 6y$$
, $\frac{\partial Q}{\partial x} = 6y$, т. е. левая часть данного уравнения есть полный дифферен-

циал некоторой функции f(x,y). Тогда $\frac{\partial f}{\partial x} = 3y^2 - x$, $\frac{\partial f}{\partial y} = 2y^3 + 6xy$. Интегрируя первое равенство по x при условия, что y фиксировано, получим $f(x,y) = \int (3y^2 - x) dx = 3y^2x - \frac{x^2}{2} + \varphi(y)$, т.е. $f(x,y) = 3y^2x - \frac{x^2}{2} + \varphi(y)$.

Продифференцируем последнее равенство по у при условии, что x фиксировано: $\frac{\partial f}{\partial x} = 6yx + \phi'(y) \ c \ другой \ стороны, \ \frac{\partial f}{\partial y} = 2y^3 + 6xy \, .$

Приравнивая правые части, получим $6yx + \phi'(y) = 2y^3 + 6xy$, $\phi'(y) = 2y^3$.

Интегрируем при условии, что у - переменная, а x- фиксированная величина.

$$\phi(y) = \int 2y^3 dy = \frac{y^4}{2} + C, \text{ T. e. } f(x, y) = 3y^2 x - \frac{x^2}{2} + \frac{y^4}{2} + C.$$

Общим интегралом данного уравнения является $3xy^2 - \frac{1}{2}x^2 + \frac{1}{2}y^4 + C_1 = C_2$.

Обозначим
$$C_2 - C_1 = C$$
, тогда $3xy^2 - \frac{1}{2}x^2 + \frac{1}{2}y^4 = C$.

Дифференциальные уравнения высших порядков

Дифференциальные уравнения выше первого порядка называются ДУ высших порядков. В общем виде его можно записать как $F(x, y, y', ..., y^n) = 0$. Будем рассматривать ДУ второго порядка, т. е. F(x, y, y', y'') = 0.

Решением ДУ называется всякая функция $y = \phi(x)$, которая при подстановке в уравнение обращает его в тождество.

Общим решением ДУ называется функция $y = \phi(x; C_1; C_2)$, где C_1 и C_2 не зависящие от x произвольные постоянные, удовлетворяющие условиям:

- 1. $\phi(x; C_1; C_2)$ является решением ДУ для каждых фиксированных значений C_1 и C_2 .
 - 2. Каковы бы ни были начальные условия $\begin{vmatrix} y \\ x=x_0 \end{vmatrix} = y_0; \begin{vmatrix} y' \\ x=x_0 \end{vmatrix} = y_1,$ существу-

ют единственные значения постоянных C_1 и C_2 , такие, что функция ϕ является решением ДУ и удовлетворяет начальным условиям.

Всякое решение, получаемое из общего решения ДУ при конкретных \mathbf{C}_1 и \mathbf{C}_2 , называется **частным** решением ДУ.

Задача нахождения решения ДУ, удовлетворяющего заданным начальным условиям, называется задачей Коши.

Уравнения, допускающие понижение порядка

В некоторых случаях, если в ДУ чего-то «не хватает», его порядок можно понизить. Если при этом получится ДУ, интегрируемое в квадратурах, то найти решение ДУ 2-го порядка можно.

Рассмотрим три типа уравнений, допускающих понижение порядка.

1. Уравнение вида y'' = f(x) решается непосредственным двукратным интегрированием обеих частей уравнения:

$$y' = \int f(x)dx = \phi(x) + C$$
, $t. e. y' = \phi(x) + C$,

$$y = \int (\phi(x) + C_1) dx = \phi_1(x) + C_1x + C_2, \quad y = \phi_1(x) + C_1(x) + C_2.$$

Пример. Найти частное решение ДУ $y'' = \cos 3x$, удовлетворяющее начальным условиям y(0) = 1, y'(0) = 1. Последовательно интегрируя два раза данное уравнение, получим $y' = \int \cos 3x \ dx$; $y' = \frac{\sin 3x}{3} + C_1$;

$$y = \int \left(\frac{1}{3}\sin 3x + C_1\right) dx = -\frac{1}{9}\cos 3x + C_1x + C_2, \quad y = C_2 + C_1x - \frac{1}{9}\cos 3x.$$

Используем начальные условия:

$$\begin{cases} y = C_2 + C_1 x - \frac{\cos 3x}{9} \\ y' = 1/3 \cdot \sin 3x + C_1 \end{cases}, \begin{cases} 1 = C_2 + C_1 \cdot 0 - \frac{\cos 0}{9} \\ 1 = 1/3 \cdot \sin 0 + C_1 \end{cases}$$

Из второго уравнения получим $C_1=1$. Из первого уравнения $1=C_2-1/9$; $C_2=10/9$. Следовательно, искомое частное решение имеет вид $y=10/9+x-(\cos 3x)/9$.

2. Уравнение вида y'' = f(x, y') не содержит явно искомой функции у. Решается заменой неизвестной функции. Пусть y' = z, где z = z(x) - новая неизвестная функция. Тогда $y'' = z' = \frac{dz}{dx}$.

Пример.
$$y'' - \frac{y'}{x} = 0$$
, $y' = z(x)$, $y'' = z'(x) = \frac{dz}{dx}$.
$$\frac{dP}{dx} = \frac{z}{x}; \quad \frac{dz}{z} = \frac{dx}{x}; \quad \int \frac{dz}{z} = \int \frac{dx}{x}; \quad \ln|z| = \ln|x| + \ln|C_1|.$$

$$\ln|z| = \ln|x \cdot C_1|; \quad z = xC_1, \text{ но } z = y'.$$

Тогда $y' = C_1 x$. $y = \int C_1 x dx = C_1 \frac{x^2}{2} + C_2$. $y = 1/2C_1 x^2 + C_2$ - общее решение данного ДУ.

3. Уравнение вида y'' = f(y, y') не содержит независимой переменной x. Решается введением новой функции, зависящей от y, т.е. $y' = \frac{dy}{dx} = P$, где P = P(y). Тогда дифференцируя, получим $y'' = P_y' \cdot y_x' = \frac{dP}{dy} \cdot \frac{dy}{dx} = \frac{dP}{dy} \cdot P = P \cdot \frac{dP}{dy}$.

Пример 1. Найти решение уравнения $y''y^3 + 1 = 0$, удовлетворяющее условиям y(1) = -1; y'(1) = -1. Введем замену y' = P(y), $y'' = P'y' = P' \cdot P$.

Подставим в уравнение: $P \cdot P'y^3 + 1 = 0$; $y^3P \cdot \frac{dP}{dy} = -1$.

Разделим переменные. $PdP = -\frac{dy}{y^3}$; $\frac{P^2}{2} = \frac{1}{2y^2} + \frac{C_1}{2}$, тогда $P^2 = \frac{1}{y^2} + C_1$; $y'^2 = \frac{1}{y^2} + C_1$

Найдем
$$C_1$$
. $(-1)^2 = \frac{1}{\left(-1^2\right)} + C_1$; $1 = 1 + C_1$; $C_1 = 0$,
$$\text{т. e. } y'^2 = \frac{1}{y^2}, \text{ или } y' = \sqrt{\frac{1}{y^2}} = \frac{1}{y}.$$

$$\frac{dy}{dx} = \frac{1}{y}$$
; y dy = dx; $\int y \, dy = \int dx$, $\frac{y^2}{2} = x + \frac{C_2}{2}$;

 $y^2 = 2x + C_2$. Найдем C_2 используя начальное условие: $(-1)^2 = 2 \cdot 1 + C_2$, $C_2 = -1$. $y^2 = 2x - 1$ - решение уравнения, удовлетворяющее начальным условиям.

Пример 2.
$$y''(1+y) = y'^2 + y'$$
.

Введем замену y' = P(y), $y'' = P' y' = P' \cdot P$. Тогда уравнение запишется в виде $P' \cdot P(1+y) = P^2 + P$ или P'(1+y) = 1 + P. Разделим переменные:

$$\begin{split} \frac{dP}{1+P} = & \frac{dy}{1+y}; \quad \int \frac{dP}{1+P} = \int \frac{dy}{1+y}; \quad \ln \big| 1+P \big| = \ln \big| 1+y \big| + \ln C_1; 1+P = C_1(1+y) \\ \text{или} \quad y' = & C_1(1+y)-1; \quad \frac{dy}{dx} = C_1(1+y)-1; \quad \frac{dy}{C_1(1+y)-1} = dx; \quad \int \frac{dy}{C_1(1+y)-1} = \int dx; \\ \frac{1}{C_1} \cdot \ln \big| C_1(1+y)-1 \big| = x + C_2; \quad \ln \big| C_1(1+y)-1 \big| = C_1(x+C_2). \end{split}$$

Линейные дифференциальные уравнения высших порядков

Уравнение вида $\alpha_0(x)y^{(n)}+\alpha_1(x)y^{(n-1)}+...+\alpha_n(x)y=f(x)$, где $\alpha_0\neq 0$; $\alpha_1(x),\ \alpha_2(x),\ ...,\ \alpha_n(x),\ g(x)$ - заданные функции аргумента x, непрерывные на некотором интервале $(a,\ b)$, называется **линейным ДУ n-го порядка**.

 $\alpha_{_0}(x), \alpha_{_1}(x), ..., \alpha_{_n}(x)$ - называются коэффициентами, g(x) - свободным членом.

Если свободный член g(x) = 0, то уравнение

 $lpha_{_0}(x)\,y^{_{(n)}}+lpha_{_1}(x)\,y^{_{(n-1)}}+...+lpha_{_n}(x)\,y=0$ - называется однородным.

Если $\alpha_0(x) = 1$, то уравнение $y^{(n)} + \alpha_1(x)y^{(n-1)} + ... + \alpha_n(x)y = g(x)$ называется приведенным.

Линейные дифференциальные уравнения второго порядка

Уравнение вида $y'' + \alpha_1(x)y' + \alpha_2(x)y = f(x)$ называется линейным ДУ второго порядка.

Уравнение $y'' + \alpha_1(x)y' + \alpha_2(x)y = 0$ называется линейным однородным ДУ второго порядка.

Общее решение однородного уравнения имеет вид $y_{0.0.} = C_1 y_1(x) + C_2 y_2(x)$, где $y_1(x)$ и $y_2(x)$ являются частными решениями однородного уравнения, C_1 и C_2 -произвольные постоянные.

Определитель
$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$
 называется **определителем Вронского.**

Если $y_1(x)$ и $y_2(x)$ - два линейно независимых решения однородного ДУ на (a, b), то определитель Вронского на этом интервале отличен от нуля. Такие решения линейного однородного ДУ образуют фундаментальную систему решений этого уравнения.

Пример. $x^2y'' - 4xy' + 6y = 0$ - линейное однородное ДУ второго порядка. Тогда его решение задается формулой $y = C_1y_1 + C_2y_2$.

Будем искать частные решения в виде $y = x^n$.

$$x^{2}(x^{n})''-4x(x^{n})'+6x^{n}=0$$

$$n(n-1)\cdot x^{2}\cdot x^{n-2}-4x\cdot n\cdot x^{n-1}+6\cdot x^{n}=0$$

$$n(n-1)\cdot x^{n}-4\cdot n\cdot x^{n}+6\cdot x^{n}=0$$
; разделим на $x^{n}\neq 0$.

Получим n(n-1)-4n+6=0; $n^2-5n+6=0$; $n_1=3$, $n_2=2$, т.е. $y_1=x^3$; $y_2=x^2$. Проверим, образуют ли y_1 и y_2 фундаментальную систему решений.

$$W(x) = \begin{vmatrix} x^3 & x^2 \\ 3x^2 & 2x \end{vmatrix} = 2x^4 - 3x^4 = -x^4 \neq 0$$
. Следовательно y_1 и y_2 образуют фунда-

ментальную систему решений и $y=C_1y_1+C_2y_2$, т.е. $y=C_2x^3+C_2x^2$. Рассмотренное уравнение можно записать в общем виде. Оно называется **уравнением Эйлера**. Частное решение ищется в виде $y=x^n$.

Нахождение фундаментальной системы решений уравнений с постоянными коэффициентами: $y'' + \alpha y' + \alpha y = f(x)$

Можно доказать, что все решения линейного однородного ДУ задаются формулой $y = y_{o.o.} + V(x)$, где $y_{o.o.}$ - общее решение соответствующего однородного уравнения, V(x)- какое-нибудь частное решение линейного неоднородного уравнения.

Для отыскания $y_{\text{o.o.}}$ составим однородное уравнение $\alpha_0 y'' + \alpha_1 y' + \alpha_2 y = 0$ и соответствующее ему характеристическое уравнение $\alpha_0 \lambda^2 + \alpha_1 \lambda + \alpha_2 = 0$. Пусть λ_1 и λ_2 - корни характеристического уравнения. Тогда возможны случаи:

- 1) $\lambda_1 \neq \lambda_2$ вещественные различные корни,
- 2) $\lambda_1 = \lambda_2 = \lambda_0$ совпадающие вещественные корни,
- 3) невещественные сопряженные корни $\lambda_{1.2} = \alpha \pm i\omega$, $\omega \neq 0$.

Тогда общее решение линейного однородного ДУ с постоянными коэффициентами можно записать соответственно в виде

1)
$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$
,

2)
$$y = C_1 e^{\lambda_0 x} + C_2 \cdot x \cdot e^{\lambda_0 x}$$
,

3)
$$y = C_1 e^{\alpha x} \cos \omega x + C_2 \cdot e^{\alpha x} \sin \omega x$$
.

Указанное правило верно для линейных однородных ДУ любого порядка с постоянными коэффициентами.

Пример 1.
$$y'' + 3y' + 2y = 0$$
.

Составим характеристическое уравнение $\lambda^2+3\lambda+2=0$, где $\lambda_1=-2$; $\lambda_2=-1$ - два различных вещественных корня, тогда $y_{o.o}=C_1e^{-x}+C_2e^{-2x}$.

Пример 2. y'' + 4y' + 4y = 0.

Составим характеристическое уравнение $\lambda^2+4\lambda+4=0$, $(\lambda+2)^2=0$; $\lambda_1=\lambda_2=-2$ - совпадающие корни, и $y_{o.o}=C_1e^{-2x}+C_2\cdot x\cdot e^{-2x}$.

Пример 3. y'' - 2y' + 10y = 0.

$$\lambda_{1,2} = \frac{2 \pm \sqrt{4 - 40}}{2} = \frac{2 \pm \sqrt{-36}}{2} = \frac{2 \pm 6\sqrt{-1}}{2} = 1 \pm 3i$$
.

Тогда $y_{o.o} = C_1 e^x \cos 3x + C_2 \cdot e^x \sin 3x$.

Понятие комплексного числа

Рассмотрим решение уравнений.

1.
$$x^2 - 4 = 0$$
. $x^2 = 4$; $x_{1,2} = \pm \sqrt{4}$; $x_{1,2} = \pm 2$.

 $x_1 = 2$, $x_2 = -2$ - два вещественных корня данного уравнения.

2. $x^2 + 4 = 0$. $x^2 = -4$; $x_{1,2} = \pm \sqrt{-4}$; $x_{1,2} = \pm 2\sqrt{-1}$. Решить данное уравнение на множестве действительных чисел нельзя.

Обозначим $i=\sqrt{-1}$, $i^2=-1$, тогда $x_{1,2}=\pm\sqrt{i^2}$, т.е. $x_1=2i$; $x_2=-2i$. Числа 2i и -2i называются чисто мнимыми числами.

3. Решим уравнение $x^2 - 4x + 13 = 0$: Д=16-4·13=16-52=-36, тогда

$$x_{1,2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6\sqrt{-1}}{2} = \frac{4 \pm 6\sqrt{i^2}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i.$$

Числа 2+3i и 2-3i называются комплексными сопряженными числами. В общем виде комплексное число можно записать как x+iy или $\alpha+\beta i$.

Нахождение частных решений линейного неоднородного уравнения **2**-го порядка методом вариаций (методом Лагранжа)

Рассмотрим уравнение y'' + py' + qy = f(x), где p, q - некоторые числа. Общее решение этого уравнения имеет вид $y = y_{o.o.} + v$,где $y_{o.o.}$ - общее решение соответствующего однородного уравнения, а v – частное решение неоднородного уравнения.

Пусть найдено $y_{o.o.} = C_1 y_1(x) + C_2 y_2(x)$, где функции $y_1(x)$, $y_2(x)$ образуют фундаментальную систему решений однородного уравнения. Лагранж предложил искать частное решение неоднородного уравнения v(x) в виде

$$v(x)=z_1(x)y_1(x)+z_2(x)y_2(x),$$

где $z_1(x), z_2(x)$ - неизвестные функции, выбираемые таким образом, чтобы функция v(x) являлась решением неоднородного уравнения, т. е. частное решение ищется в том же виде, что и общее $y_{o.o.}$, но произвольные постоянные C_1 и C_2 «варьируют», заменяя их на функции $z_1(x), z_2(x)$. Для того чтобы таким образом введенная функция v(x) являлась решением неоднородного уравнения, нужно, чтобы производные функций $z_1(x)$ и $z_2(x)$ удовлетворяли следующей системе уравнений:

$$\begin{cases} z_1' y_1 + z_2' y_2 = 0, \\ z_1' y_1' + z_2' y_2' = f(x). \end{cases}$$

Определителем этой системы является вронскиан. Поэтому система имеет единственное решение $\{z_1'(x), z_2'(x)\}$. Интегрируя $z_1'(x), z_2'(x)$, находим $z_1(x), z_2(x)$, затем частное решение неоднородного уравнения v(x) и общее решение неоднородного уравнения v(x).

Этот метод пригоден и для нахождения частных решений линейных уравнений n-го порядка.

Решение ищется в виде $v(x)=z_1(x)y_1(x)+z_2(x)y_2(x)+...+z_n(x)y_n(x)$, а функции $z_1',\ z_2',\ ...\ ,\ z_n'$ удовлетворяют следующей системе уравнений:

$$\begin{cases} z_1'y_1 + z_2'y_2 + ... + z_n'y_n = 0, \\ z_1'y_1' + z_2'y_2' + ... + z_n'y_n' = 0, \\ \\ z_1'y_1^{(n-1)} + z_2'y_2^{(n-1)} + ... + z_n'y_n^{(n-1)} = f(x). \end{cases}$$

Метод Лагранжа универсален, т. е. годится для правых частей f(x) произвольного вида. Но для нахождения функций $z_1(x)$, $z_2(x)$ требуется вычислять интегралы. Ниже будет рассмотрен метод, позволяющий обходиться без интегрирования, но пригодный лишь для функций f(x) специального вида.

Пример. Найти общее решение неоднородного уравнения $y'' + 4y = \frac{1}{\cos 2x}$. Сначала находим общее решение однородного уравнения y'' + 4y = 0. Для этого составляем характеристическое уравнение $\lambda^2 + 4 = 0$ и находим его корни $\lambda_{1,2} = \pm 2i$. Тогда $y_1 = \cos 2x$, $y_2 = \sin 2x$ и $y_{0.0.} = c_1 \cos 2x + c_2 \cos 2x$. Частное решение неоднородного уравнения ищем в виде $v(x) = z_1(x) \cos 2x + z_2(x) \sin 2x$, где z_1' и z_2' удовлетворяют системе уравнений

$$\begin{cases} z_1' \cos 2x + z_2' \sin 2x = 0, \\ -2z_1' \sin 2x + 2z_2' \cos 2x = \frac{1}{\cos 2x} \begin{vmatrix} 2\sin 2x \\ \cos 2x \end{vmatrix} \\ 2z_2' \left(\sin^2 2x + \cos^2 2x\right) = 1. \end{cases}$$

Отсюда
$$z_2' = \frac{1}{2}$$
, $z_1' = -z_2' \frac{\sin 2x}{\cos 2x} = -\frac{1}{2} \frac{\sin 2x}{\cos 2x}$, $z_2 = \int \frac{1}{2} dx = \frac{1}{2} x$,
$$z_1 = -\frac{1}{2} \int \frac{\sin 2x}{\cos 2x} dx = \frac{1}{4} \int \frac{d(\cos 2x)}{\cos 2x} = \frac{1}{4} \ln|\cos 2x|.$$

При вычислении интегралов считаем произвольные постоянные равными нулю. Функция $v(x) = \frac{1}{4} \ln \left| \cos 2x \right| \cos 2x + \frac{1}{2} x \sin 2x$, а общее решение неоднородного уравнения имеет вид $y_{\text{o.o.}} = c_1 \cos 2x + c_2 \sin 2x + \frac{1}{4} \ln \left| \cos 2x \right| \cos 2x + \frac{1}{2} x \cdot \sin 2x$.

Интегрирование линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами и правой частью специального вида

Рассмотрим уравнение y'' + py' + qy = f(x), где p и q- некоторые числа. Общее решение этого уравнения имеет вид $y = y_{o.o.} + V$, где $y_{o.o.}$ - общее решение соответствующего однородного уравнения, а V- частное решение неоднородного уравнения.

Если функция f(x), стоящая в правой части уравнения, имеет так называемый «специальный вид»: $f(x) = P_n(x)e^{\alpha x}$ или $f(x) = e^{\alpha x} \left(P_n(x) \cos \beta x + Q_n(x) \sin \beta x \right)$, то среди решений ДУ содержится функция такого же вида.

- 1. Пусть $f(x)=P_n(x)e^{\alpha x}$, где $P_n(x)$ многочлен n-й степени, $\alpha \in R$. В этом случае частное решение V(x) имеет вид $V(x)=X^rQ_n(x)e^{\alpha x}$, где r- число, равное кратности α , как корня характеристического уравнения $\lambda^2+p\lambda+q=0$ (число r показывает, сколько раз число α является корнем характеристического уравнения $\lambda^2+p\lambda+q=0$). $Q_n(x)=A_0X^n+A_1X^{n-1}+...+A_n$ многочлен n-й степени, записанный с неопределенными коэффициентами A_0 , A_1 , ..., A_n .
 - 1. Если α не является корнем характеристического уравнения, то $V(x) {=} Q_{_n}(x) e^{\alpha x} \, .$
 - 2. Если α является корнем характеристического уравнения один раз, то $V(x){=}X\cdot Q_{_n}(x)e^{\alpha x}\,.$

3. Если α является двукратным корнем характеристического уравнения, то $V(x) = X^2 \cdot Q_n(x) e^{\alpha x}$.

Пример 1. $y'' - 3y' + 2y = x^2 - 1$.

Общее решение имеет вид $y = y_{0,0} + V$.

- 1. Найдем $y_{o,o}$. Для этого составим однородное уравнение: y'' 3y' + 2y = 0. Соответствующее ему характеристическое уравнение $\lambda^2 3\lambda + 2 = 0$ имеет корни $\lambda_1 = 2$; $\lambda_2 = 1$. Следовательно $y_{o,o} = C_1 e^{2x} + C_2 e^x$.
- 2. Найдем V частное решение неоднородного уравнения. Правую часть ДУ $f(x) = x^2 1$ запишем в виде $f(x) = P_2(x)e^{0\cdot x} = A_0X^2 + A_1X + A$. Причем $\alpha = 0$, не является корнем характеристического уравнения. Частное решение V(x) будем искать методом неопределенных коэффициентов:

$$V(x) = X^{0}(A_{0}X^{2} + A_{1}X + A_{2})e^{0x} = AX^{2} + BX + C.$$

$$2A - 3(2AX + B) + 2(AX^2 + BX + C) = X^2 - 1.$$

Приравняем коэффициенты при одинаковых степенях X и получим систему.

Пример 2. α является однократным корнем характеристического уравнения.

$$y'' - 3y' + 2y = 5 + e^x$$
. Решение ДУ: $y = y_{o.o.} + V$.

1) Найдем $y_{0.0.}$. $y_{0.0.} = C_1 y_1 + C_2 y_2$.

y'' - 3y' + 2y = 0 - однородное уравнение.

 $\lambda^2 - 3\lambda + 2 = 0$ - характеристическое уравнение.

$$\lambda_1 = 2$$
; $\lambda_2 = 1$; $y_{0,0} = C_1 e^{2x} + C_2 e^{x}$.

2)
$$f(x) = 5 + e^x = P_0(x) + e^{\alpha x} = 5 + e^{1-x}$$
.

Число $\alpha = 1$ является корнем характеристического уравнения один раз, т.е. r = 1. Частное решение ДУ имеет вид

$$V(x) = A + X^{1} \cdot B \cdot e^{1 \cdot x} = A + XBe^{x}.$$

2. Пусть правая часть ДУ f(x) имеет «специальный» вид:

$$f(x) = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x)$$
, где $P_n(x)$ и $Q_m(x)$ - многочлены степеней

n и m соответственно. В этом случае решение следует искать в виде

 $V(x) = X^r e^{\alpha x} (M_\ell(x) \cos \beta x + N_\ell(x) \sin \beta x)$, где число r — число, равное кратности числа $\alpha + \beta i$, как корня характеристического многочлена, $M_\ell(x)$ и $N_\ell(x)$ — многочлены ℓ -ой степени с неопределенными коэффициентами и $\ell = \max(n,m)$. После подстановки функции V(x) и ее производных V'(x) и V''(x) в уравнение приравнивают многочлены, стоящие при одноименных функциях в левой и правой частях ДУ.

Пример.
$$y'' - 2y' - 3y = e^x \cos 2x$$
.
 $y = y_{0,0} + V, y_{0,0} = C_1 y_1 + C_2 y_2$.

1. Решаем однородное ДУ.

$$y''-2y'-3y=0, \quad \lambda^2-2\lambda-3=0\,.$$

$$\lambda_1=3, \ \lambda_2=-1, \ \text{тогда} \qquad y_{o,o}=C_1e^{3x}+C_2e^{-x}\,.$$

2. Запишем правую часть в виде

$$f(x) = e^{\alpha x} \left(P_n(x) \cos \beta x + Q_n(x) \sin \beta x \right) = e^{1 \cdot x} \left(1 \cdot \cos 2x + 0 \cdot \sin 2x \right) .$$

Составим число $\alpha + \beta i = 1 + 2i$; оно не является корнем характеристического уравнения. Следовательно r = 0 и частное решение будем искать с виде

$$V(x) = X^{0} \cdot e^{1 \cdot x} (A \cos 2x + B \sin 2x) = e^{x} (A \cos 2x + B \sin 2x).$$

$$V' = e^{x} (A \cos 2x + B \sin 2x) + e^{x} (-2A \sin 2x + 2B \cos 2x) =$$

$$= e^{x} ((A + 2B)\cos 2x + (B - 2A)\sin 2x).$$

 $V'' = e^{x}((A + 2B)\cos 2x + (B - 2A)\sin 2x) + e^{x}((-2A - 4B)\sin 2x + (2B - 4A)\cos 2x).$ Подставим полученные выражения в уравнение.

$$\begin{array}{c|c} -3 & V(x) = e^{x} (A\cos 2x + B\sin 2x), \\ \Pi \text{олучим} & -2 & V'(x) = e^{x} ((A+2B)\cos 2x + (B-2A)\sin 2x), \\ 1 & V''(x) = e^{x} ((4B-3A)\cos 2x + (-4A-3B)\sin 2x), \end{array}$$

$$V''(x) - 2V'(x) - 3V(x) =$$

$$= e^{x} ((-3A - 2A - 4B + 4B - 3A)\cos 2x + (-3B - 2B - 2A + 4A - 4A - 3B)\sin 2x) =$$

$$= e^{x} (-8A\cos 2x - 8B\sin 2x) = e^{x}\cos 2x.$$

Следовательно,

$$-8Ae^{x}\cos 2x = e^{x}\cos 2x$$
, $A = -\frac{1}{8}$.

Таким образом, $V(x) = -\frac{1}{8}e^x \cos 2x$.

$$y = C_1 e^{3x} + C_2 e^{-x} - \frac{1}{8} e^x \cos 2x$$
.

ЗАДАЧИ

Задачи 1-5. Определить тип уравнений: с разделяющимися переменными и приводящиеся к ним, однородные и приводящиеся к однородным, линейные уравнения, уравнения Бернулли, уравнения в полных дифференциалах. Найти общее решение или общий интеграл. Там, где указано, решить задачу Коши.

Задача 6. Уравнения, допускающие понижение порядка.

Задача 7. Однородные линейные ДУ.

Задача 8. Неоднородные линейные уравнения с постоянными коэффициентами с правыми частями специального вида.

Задача 1

1.
$$xydx + (x + 1) dy = 0$$
.

$$3. \sqrt{y^2 + 1} dx = xy dy.$$

5.
$$2x^2y y' + y^2 = 2$$
.

7.
$$y' - x y^2 = 2x y$$
.

9.
$$e^{-s}(1+ds/dt)=1$$
.

11.
$$x \frac{dx}{dt} + t = 1$$
.

13.
$$y' = \cos(y - x)$$
.

15.
$$y' = \frac{y-1}{x+1}$$
.

17.
$$(y^2 + xy^2)dx + (x^2 - yx^2)dy = 0$$
.

19. $\sin x \sin x dx + \cos x \cos y dy = 0$.

21.
$$(xy^2 + x)dx + (y - x^2y)dy = 0$$
.

23.
$$y' tg x - y = a$$
.

25.
$$xy' = \frac{y}{\ln x}$$
.

2.
$$(x^2 - 1)y' + 2x y^2 = 0$$
, $y(0) = 1$.

4.
$$y'$$
ctgx + y = 2, $y(0) = -1$.

6.
$$y' = 3\sqrt[3]{y^2}$$
, $y(2) = 0$.

8.
$$xy' + y = y^2$$
, $y(1) = 0.5$.

10.
$$(x + 2y)y' = 1$$
, $y(0) = -1$.

12.
$$(1 + y^2) dx = x y dy$$
, $y(2) = 1$.

14.
$$y' = 2\sqrt{y} \ln x$$
, $y(e) = 1$.

16.
$$(1+x^2)y'+y\sqrt{1+x^2}=xy$$
, $y(0)=1$.

18.
$$x + xy + yy'(1+x) = 0$$
, $y(0)=0$.

20.
$$x\sqrt{1+y^2} + y\sqrt{1+x^2} y' = 0$$
, $y(0) = 0$.

22.
$$xyy' = 1 - x^2$$
, $y(1) = 0$.

24.
$$\sqrt{1-y^2} dx + y\sqrt{1-x^2} dy = 0$$
, $y(0) = 1$.

1.
$$xy' - 2y = 2x^4$$
, $y(0) = 0$.

3.
$$y' + e t g x = sec x$$
, $y(0) = 1$.

5.
$$x^2y' + xy + 1 = 0$$
, $y(1) = 2$.

7.
$$y'=2x(x^2+y)$$
, $y(0)=1$.

9.
$$xy'+(x+1)y=3x^2e^{-x}$$
, $y(1)=0$.

11.
$$y' = \frac{y}{3x - y^2}$$
, $y(0) = 1$.

13.
$$y' \sin x - y \cos x = 1$$
, $y(\pi/2) = 0$.

15.
$$dy = (x^2 + 2x - 2y)dx$$
, $y(0) = 0$.

17.
$$y' = \frac{y}{2y \ln y + y - x}$$
, $y(0) = 1$.

19.
$$y' + \frac{1}{x^2 + y^2} = 0$$
, $y(0) = 0$.

21.
$$xy' - y = x^2 \cos x$$
, $y(\pi) = \pi$.

23.
$$y' + \left(\frac{n}{x}\right)y = \frac{a}{x^n}, y(1) = 0.$$

2.
$$(2x+1)y' = 4x + 2y$$
.

4.
$$x(y'-y)e^{x}$$
.

6.
$$y=x(y'-x\cos x)$$
.

8.
$$(xy'-1)\ln x = 2y$$
.

10.
$$(x + y^2 dy = y dx)$$
.

12.
$$x^2y' - y = x^2e^{x-1/x}$$
.

14.
$$y' + y / x = x^2$$
.

16.
$$y' = \frac{1}{2x - y^2}$$
.

18.
$$x(y'-y)=(1+x^2 e^x)$$
.

20.
$$(x+1)dy - [2y+(x+1)^4]dx = 0$$
.

22.
$$y' + 2x u = x e^{-x^2}$$
.

24.
$$y'\cos x + y = 1 - \sin x$$
.

25.
$$y' - y = e^x$$
.

Задача 3

1.
$$(x + 2y)dx - x dy = 0$$
.

3.
$$(y^2 - 2xy)dx + x^2dy = 0$$
.

5.
$$y^2 + x^2y' = xyy'$$
.

7.
$$xy' - y + x tg(y/x)$$
.

9.
$$xy' - y = (x + y) \ln \frac{x + y}{x}$$
.

11.
$$(y + \sqrt{xy})dx = xdy$$
.

13.
$$(2x-4y+6)+(x+y-3)dy=0$$
.

15.
$$x - y - 1 + (y - x + 2)y' = 0$$
.

17.
$$(y+2)dx = (2x + y - 4)dy$$
.

19.
$$(4y^2 + x^2)y' = xy$$
.

21.
$$xy' = y \cos(\ln y/x)$$
.

23.
$$v'=e^{y/x} + v/x$$
.

25.
$$(x^2 + y^2)dx = 2 x y dx$$
.

2.
$$(x - y)dx + (x + y)dy = 0$$
.

4.
$$2x^3y' = y(2x^2 - y^2)$$
.

6.
$$(x^2 + y^2)y' = 2xy$$
.

8.
$$xy' = y - x e^{y/x}$$
.

10.
$$xy' = y \cos \ln \frac{y}{x}$$
.

12.
$$xy' = \sqrt{x^2 - y^2} + y$$
.

14.
$$(2x + y + 1)dx - (4x + 2y - 3)dy = 0$$

16.
$$(x + 4y)y' = 2x + 3y - 5$$
.

18.
$$xy' = \sqrt{x^2 + y^2} + y$$
.

20.
$$xy' = y + x(1 + e^{y/x})$$
.

22.
$$(x^2 + y^2 dx - xydy = 0)$$
.

$$24.yy' = 2y - x$$
.

1.
$$y'x + y = -xy^2$$
.

3.
$$xdy = (x^5y^2 - 2y)dx$$
.

5.
$$y' + 2xy = 2x^3y^3$$
.

7.
$$xdx = (x^2 / y - y^3)dy$$
.

9.
$$y' - y tg x + y^2 cos x = 0$$
.

11.
$$y' - \frac{y}{x-1} = \frac{y^2}{x-1}$$
.

13.
$$4xy' + 3y = -e^x x^4 y^5$$
.

15.
$$y' + \frac{3x^2y}{x^3 + 1} = y^2(x^3 + 1)\sin x$$
.

17.
$$y' - 2y tg x + y^2 sin^2 x = 0$$
.

19.
$$xy' + xy^2 = y$$
.

21.
$$y' + 2y = y^2 e^x$$
.

23.
$$xy' + 2y + x^5y^3e^x = 0$$
.

25.
$$y' + y = xy^3$$
.

2.
$$y' - x y = x^3 y^3$$
.

4.
$$yy' - 4x - y^2 \sqrt{x} = 0$$
.

6.
$$y' + \frac{y}{x+1} + y^2 = 0$$
.

8.
$$xy' + y = y^2 \ln x$$
.

10.
$$y' + \frac{2y}{x} = 3x^2y^{4/3}$$
.

12.
$$y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$$
.

14.
$$y' + y = e^{x/2} \sqrt{y}$$
.

16.
$$ydx + (x + x^2y^2)dy = 0$$
.

18.
$$y' + 4x^3y^3 + 2xy = 0$$
.

20.
$$2x^2y' = y^3 + xy$$
.

22.
$$y' = y^4 \cos x + y \operatorname{tg} x$$
.

24.
$$xy' - 4y = 2x^2 \sqrt{y}$$
.

Задача 5

1.
$$2xy dx + (x^2 - y^2 dy) = 0$$
.

3.
$$e^{-y}dx - (2y + xe^{-y})dy = 0$$
.

5.
$$\frac{3x^2 + y^2}{y^2} dx - \frac{2x^3 + 5y}{y^3} dy = 0.$$

7.
$$(1 + y^2 x in 2x) dx - 2y cos x^2 dy = 0$$
.

9.
$$\left(\frac{x}{\sin y} + 2\right) dx + \frac{(x^2 + 1)\cos y}{(\cos 2y - 1)} dy = 0$$
.

11.
$$(y + e^x \sin y) dx + (x + e^x \cos y) dy = 0$$
.

13.
$$(x^2 + y^2 + y)dx + (2xy + x + e^y)dy = 0$$
.

15.
$$(y + x \ln y) dx + (x^2/2y + x + 1) dy = 0$$
.

17.
$$(3x^2y + \sin x)dx + (x^3 - \cos y)dy = 0$$
.

2.
$$(2-9xy^2)x dx + (4y^2 - 6x^3)y dy = 0$$
.

4.
$$\frac{y}{x} dx + (y^3 + \ln x) dy = 0$$
.

6.
$$2x(1+\sqrt{x^2-y})dx - \sqrt{x^2-y} dy = 0$$
.

8.
$$3x^2(1 + \ln y)dx = (2y - x^3 / y)dy$$
.

10.
$$(x + \sin y)dx + (x \cos y + \sin y)dy = 0$$
.

$$12.(xy + \sin y)dx + (0.5x^2 + x\cos y)dy = 0.$$

14.
$$(2xye^x + \ln y)dx + (e^{x^2} + x/y)dy = 0$$
.

16.
$$(x^2 + \sin y)dx + (1 + x \cos y)dy = 0$$
.

18.
$$(e^{x+y} + 3x^2)dx + (e^{x+y} + 4y^3)dy = 0$$
.

$$19. (2x y + 3y^2) dx + (x^2 + 6x y - 3y^2) dy = 0. \quad 20. (3x y^2 - x^2) dx + (3x^2y - 6y^2 - 1) dy = 0.$$

21.
$$(\ln y - 2x)dx + (\frac{x}{y} - 2y)dy = 0$$
.

$$22. \left(\sin \frac{2x}{y} + x \right) dx + \left(y - \frac{\sin^2 x}{y^2} \right) dy = 0.$$

23.
$$(x + y) - (y - x)y' = 0$$
.

24.
$$e^{y}dx + (xe^{y} - 2y)dy = 0$$

25.
$$(x^3+3xy^2)dx+(y^3+3x^2y)dy=0$$
.

Решить дифференциальные уравнения, допускающие понижение порядка.

1.
$$y^{/v} = x$$
.

3.
$$y''(x+2)^5 = 1$$
.

5.
$$xy'' + y' = 0$$
.

7.
$$xy'' = y' + x^2$$
.

9.
$$y'' + 2y(y')^3 = 0$$
.

11.
$$2yy'' = (y')^2$$
.

13.
$$x \ln xy'' = y'$$
.

15.
$$y''' = \sqrt{1 - y''^2}$$
.

17.
$$y'' = \sqrt{1 - y'^2}$$
.

19.
$$y''' + y''^2 = 0$$
.

21.
$$yy'' + y'^2 = 0$$
.

23.
$$yy'' = 1 + y'^2$$
.

25.
$$2x y'' = y'$$
.

2.
$$y''' = x + \cos x$$
.

4.
$$xy'' = y'$$
.

6.
$$xy'' = (1 + 2x^2)y'$$
.

8.
$$3y'' = (1 + y'^2)^{3/2}$$
.

10.
$$yy'' + y'^2 = 0$$
.

12.
$$y'' = \sqrt{1 + y'^2}$$
.

14.
$$xy'' = y' \ln y' / x$$
.

16.
$$xy''' - y'' = 0$$
.

18.
$$y'' = \sqrt{1 + y'}$$
.

20.
$$y'' = y'(1 + y')$$
.

22.
$$yy'' = y' + y'^2$$
.

24.
$$2yy'' = 1 + y'^2$$
.

Задача 7

Проинтегрировать следующие однородные линейные уравнения с постоянными коэффициентами.

1.
$$y'' + 4y' + 3y = 0$$
.

3.
$$y'' + 2y' + 10y = 0$$
.

5.
$$4y'' + 4y' + y = 0$$
.

7.
$$y^{v/} + 64 = 0$$
.

9.
$$y'' - 4y' + 5y = 0$$
.

11.
$$y'' - 2y' + y = 0$$
.

13.
$$y''' + y' = 0$$
.

2.
$$2y'' - 5y' + 2y = 0$$
.

4.
$$y''' - 8y = 0$$
.

6.
$$y'^v - y = 0$$

8.
$$y''' - 3y' + 2y = 0$$
.

10.
$$y'' + y' - 2y = 0$$
.

12.
$$y'' + 6y' + 13y = 0$$
.

14.
$$y''' + 2y'' + 10y' = 0$$
.

15.
$$y''' - 3y' - 2y = 0$$
.

17.
$$y'^v + 18y'' + 81y = 0$$
.

19.
$$y'' - y' - 2y = 0$$
.

21.
$$y'' - 4y' + 4y = 0$$
.

23.
$$y'' - 10y' + 25y = 0$$
.

16.
$$y'^v + 10'' + 9y = 0$$
.

18.
$$y''' + y'' = 0$$
.

20.
$$y'' + 25y = 0$$
.

22.
$$y'' + 5y' + 6y = 0$$
.

24.
$$y'' - 2y' + 10y = 0$$
.

25.
$$y'^{v} - 16y = 0$$
.

Решить следующие линейные неоднородные уравнения с постоянными коэффициентами и правой частью специального вида методом подбора частных решений по виду правой части, где указано, решить задачу Коши.

1.
$$y'' + 2y' = 4e^{x} (\sin x + \cos x)$$
.

3.
$$y'' + 2y' = 2e^{x} (\sin x + \cos x)$$
.

5.
$$y'' + 2y' + 5y = -\sin 2x$$
.

7.
$$y'' + 2y' = e^{x} (\sin x + \cos x)$$
.

9.
$$y'' + 6y' + 13y = e^{-3x} \cos 4x$$
.

11.
$$y'' + 2y' + 5y = -2\sin x$$

13.
$$y'' + 2y' = 10e^{x} (\sin x + \cos x)$$
.

15.
$$y'' + 2y' + 5y = -\cos x$$
.

17.
$$y'' + 9y' = x \cos 3x$$
.

19.
$$y'' + 2y' = 3e^{x}(\sin x + \cos x)$$
.

21.
$$y'' + 6y' + 13y = e^{-3x} \cos 8x$$
.

23.
$$y'' - 8y' + 17y = x^2 e^{2x}$$
.

25.
$$y'' - 4y' + 8y = e^{x} (-\sin x + 2\cos x)$$
.

2.
$$y'' - 4y' + 4y = -e^{2x} \sin 6x$$
.

4.
$$y'' - 4y' + 3y = -e^{3x}$$
, $y(0) = 3$, $y'(0) = 9$.

6.
$$y'' - 8y' + 16y = e^{4x}$$
, $y(0) = 0$, $y'(0) = 1$.

8.
$$y'' - 2y' + 10y = 10x^2 + 18x + 6$$
.

10.
$$y'' + y = 2\cos 5x + 3\sin 5x$$
.

12.
$$y'' + 2y' = 6e^{x} (\sin x + \cos x)$$

14.
$$y'' + 6y' + 13y = e^{-3x} 5x$$
.

16.
$$y'' + 2y' + 5y = -17\sin 2x$$
.

18.
$$y'' - 4y' + 4y = e^{2x} \sin 4x$$
.

20.
$$y'' - 4y' + 8y = e^{x} (3\sin x + 5\cos x)$$
.

22.
$$y''' - 2y'' - 3y = (8x - 14)e^{-x}$$
.

24.
$$y''' + 6y'' + 9y = (16x + 24)e^{x}$$
.

Задача 9

Проинтегрировать методом вариации постоянных следующие уравнения:

1.
$$y'' + y = \frac{1}{\sin x}$$
.

3.
$$y'' + y = \frac{1}{\cos^3 x}$$
.

5.
$$y'' + y = \frac{2}{\sin^3 x}$$
.

7.
$$y'' - y' = e^{2x} \cos e^x$$
.

9.
$$y'' + 4y' + 4y = e^{-2x} \ln x$$
.

2.
$$y'' - y' = \frac{1}{e^x + 1}$$
.

4.
$$y'' - 2y' + y = \frac{e^x}{x^2 + 1}$$
.

6.
$$y'' + 2y' + 2y = \frac{2}{e^x \sin x}$$
.

8.
$$y''' + y'' = \frac{x-1}{x^2}$$
.

10.
$$y'' + 4y = \frac{1}{\sin^2 x}$$
.

11.
$$y'' - 2y' + y = \frac{e^x}{\sqrt{4 - x^2}}$$
.

13.
$$y'' + a^2y = e^x$$
.

15.
$$y'' + 2y' + 5y = -\frac{17}{5}\cos 2x$$
.

17.
$$y'' - 3y' + 2y = 10e^{-x}$$
.

19.
$$2y'' + 5y' = 29\cos x$$
.

21.
$$y'' + y = \cos x \cos 2x$$
.

23.
$$5y'' - 6y' + 5y = e^{3/5x} \sin \frac{4}{5}x$$
.

25.
$$y'' - y' = e^{2x} \cos e^{x}$$
.

12.
$$2y'' + y' - y = 2e^x$$
.

14.
$$y'' - 7y' + 6y = \sin x$$
.

16.
$$y'' - 6y' + 9y = 2x^2 - x + 3$$
.

18.
$$y'' - 3y' + 2y = 2e^x \cos \frac{x}{2}$$
.

20.
$$2y'' + 5y' = 29x \sin x$$
.

22.
$$5y'' - 6y' + 5y = e^{3/5x} \cos x$$
.

24.
$$y'' - y' = \frac{e^x}{1 + e^x}$$
.

Библиографический список

- 1. Пискунов Н. С. Дифференциальное и интегральное исчисление. М.: Наука, 1985. 855 с.
- 2. Берман Г. Н. Сборник задач по курсу математического анализа. М.: Наука, 1980.
- 3. Бугров Я. С., Никольский С. М. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1982.
- 4. Практикум по курсу «Высшая математика» / Н. И. Васильева, Е. А. Воробьева, О. А. Колозова, Р. С. Кичигина, Н. А. Воронцова. Омск, Изд-во ОмГТУ, 2002. 78 с.
- 5. Обыкновенные дифференциальные уравнения: Метод. указания к типовому расчету / Сост.: Г. Е. Квасова, И. Д. Макарова; ОмПИ. Омск, 1992. 40 с.
- 6. . Неопределенный интеграл. Метод. указания к практическим занятиям / Сост. Р.Л. Долганов, Е. В. Гарифуллина, А. И. Фирдман, Н. Г. Марьина; ОмГТУ. Омск, 2002. 36 с.
- 7. Неопределенный и определенный интегралы: Метод. указания для студентов-заочников ОмГТУ / Сост.: Л. В. Бельгарт, О. А. Колозова, И. Д. Макарова, С. Е. Макаров; ОмГТУ. Омск, 1998. 76 с.