- 2. Груздков А. А., Слободинская Т. В. О результатах диагностического тестирования по математике в СПбГТИ(ТУ) // Проблемы математической и естественно-научной подготовки в инженерном образовании: сб. тр. V междун. научн.-метод. конф. СПб.: ПГУПС, 2018. С. 101–108.
- 3. Марков В. Н. Знание против понимания // Мир психологии. 2018. № 2(94). С. 171-182. https://elibrary.ru/item.asp?id=35555026
- 4. Новиков А.М. Методология учебной деятельности: контроль, оценка, рефлексия // Педагогическая диагностика. 2015. № 2. С. 16–23.
- 5. Серегин Г.М. Психологический аспект понятия «понимание» // Философия образования. 2008. № 1(22). С. 156-163. https://elibrary.ru/item.asp?id=11789640

Сведения об авторах:

Алексей Андреевич Груздков

Служебный адрес: 190013, Россия, Санкт-Петербург, Московский пр., д. 26.

E-mail: gruzdkov@mail.ru. Spin-code: 9756-8959.

УДК 519.6

А. В. Гусаров

кандидат технических наук, доцент Рыбинский государственный авиационный технический университет имени П. А. Соловьева, Ярославская обл., г. Рыбинск, Россия

ОСОБЕННОСТИ ИЗУЧЕНИЯ ВЫСШЕЙ МАТЕМАТИКИ ВЫПУСКНИКАМИ КОЛЛЕДЖЕЙ ВО ВРЕМЯ ИХ ОБУЧЕНИЯ В ТЕХНИЧЕСКОМ ВУЗЕ

Аннотация. Одной из проблем, возникающих в процессе обучения в вузе студентов-выпускников колледжей, является несоответствие их уровня математической подготовки и подготовки по предметам, определяющих их профессиональную деятельность. Цель работы — показать на конкретном примере, что существуют проблемы при решении практических задач без углубленного изучения теоретического материала, а также предложить один из способов их решения. Задачей является разработка методических указаний коллективом преподавателей кафедры высшей математики и выпускающей кафедры. В качестве примера приведена разработка алгоритмов для программной реализации дискретного преобразования Фурье. Результаты работы проходят апробацию в процессе обучения.

Ключевые слова: проект; выпускники колледжа; ряды Фурье; дискретное преобразование Фурье; алгоритм.

DOI: 10.25206/2307-5430-2019-7-114-121

В настоящее время студенты-бакалавры, имеющее профильное образование в колледже, обучаются по сокращенной программе. Срок обучения при этом фактически составляет не 4 года, а 3, так как в оставшиеся месяцы обучения в последнем осеннем семестре идет процесс выполнения выпускной квалификационной работы (ВКР). Повышенная учебная нагрузка приводит к тому, что у студентов практически не остается времени на участие в различных общественных и научных мероприятиях (собраниях, конкурсах, олимпиадах, конференциях). К этому еще нужно добавить, что многие студенты, обучающиеся по сокращенной программе, подрабатывают по специальности. Для студентов со средним профессиональным образованием и дипломом программиста найти работу не так уж сложно. В отличие от выпускников школ, совсем недавно изучавших школьный курс математики, выпускники колледжей изучали математику 2-3 года назад, что по нынешним меркам — очень давно. Лекции по разделам высшей математики обычно проводятся совместно с вчерашними школьниками, поэтому часто имеет место ситуация, когда одни (вчерашние школьники) откровенно «скучают», а другие мучительно пытаются что-то вспомнить. Вместе с тем выпускники колледжей имеют большой опыт практической работы, в том числе создания готовых продуктов, который на младших курсах оказывается невостребованным, а также опыт учебы, а иногда и работы, в коллективе. При этом никто не отменял рейтинговую систему контроля знаний, которая используется при обучении на первых двух курсах.

Участие в олимпиадах и конференциях в процессе обучения в техническом вузе — тенденция современного высшего образования. При отсутствии взаимодействия между предприятиями, производящими продукцию (в том числе и в сфере *IT*-технологий), участие в олимпиадах и выступление на научных конференциях — один из способов совершенствовать умения и навыки, необходимые в процессе трудовой деятельности на предприятии.

Сама идея привлечения студентов к участию в олимпиадах и конференциях не нова. В бытность автора студентом еще существовала система хоздоговоров с предприятиями, в которой находилось место и студентам, причем с первого курса. Студенты-мужчины часто начинали работать на хоздоговорных темах после службы в армии или на флоте, то есть на втором или даже на третьем курсе. При этом срок обучения составлял 5 лет, и студенты успевали получить необходимый опыт работы. В то же время участие в конференциях по естественнонаучным, и, в первую очередь, по математическим дисциплинам являлось своего рода обязательным дополнением к работе на хоздоговорной теме,

так как полученные в процессе работы результаты публиковались и использовались для подготовки кандидатских и докторских диссертаций. Участие в олимпиадах в то время практически не давало никаких преимуществ для студента, так как повышенная стипендия назначалась по результатам научной и общественной работы. Сейчас участие в олимпиадах и конференциях позволяет студенту получить весомую прибавку к стипендии и сконцентрировать все свои силы на учебном процессе, а не на подработках.

Таким образом, выпускники колледжей, получающие высшее образование по профильным *IT*-направлениям, имеют ряд преимуществ по сравнению с вчерашними школьниками. Поэтому на кафедре вычислительных систем РГАТУ имени П. А. Соловьева среди выпускников колледжей с первых дней обучения проводится работа по их привлечению к участию в математических олимпиадах и научных конференциях, в том числе и всероссийского уровня. Дальнейшая работа с ними в процессе обучения направлена на вовлечение таких студентов в различные проекты, реализуемые на кафедре. Опыт разработки ими программного обеспечения в данном случае помогает в тех ситуациях, когда нужно написать программы на языках высокого уровня. Кроме того, студенты сами углубленно изучают те вопросы применения математических методов, которые не рассматриваются в курсе высшей математики. В качестве примера можно привести участие студентов-выпускников колледжей во Всероссийской научно-практической конференции «Актуальная математика» [1], где они делали доклады на темы, связанные с применением математики в процессе криптоанализа.

Для реализации большого потенциала студентов-выпускников колледжей в области практических знаний имеет смысл давать им возможность реализовать практические навыки путем изучения применения конкретных разделов математики в проектах, реализуемых на кафедре. Для этого студент или группа студентов получают задание по реализации, например, программного обеспечения для микроконтроллера, выполняющего функции контроля и управления. Программа пишется на языке C с использованием встроенных библиотек для микроконтроллеров. Для написания программы необходимо изучить один или несколько разделов курса высшей математики.

В качестве примера рассмотрим следующее задание: написать программу для реализации преобразования Фурье синусоидальных сигналов при помощи микроконтроллера с встроенным аналого-цифровым преобразователем (АЦП). Параметры АЦП и передаточная функция канала ввода аналогового сигнала известны. Задача является частью проекта, реализуемого в рамках научных исследований по некоторой тематике.

При кажущейся простоте решения задачи даже при наличии конспекта лекций по высшей математике [2], о котором восторженно отзываются многие математики, студенты сталкиваются со следующими проблемами. О рядах Фурье здесь написано достаточно много, но для случая, когда анализируемая

функция задана аналитически. Приводятся примеры разложения функции в ряд Фурье, используя, например, соотношение

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n \cdot e^{\frac{i \cdot n \cdot \pi \cdot x}{l}}, \quad c_n = \frac{1}{2 \cdot l} \int_{-l}^{l} f(x) \cdot e^{-\frac{i \cdot n \cdot \pi \cdot x}{l}} dx, \quad n = 0, \pm 1, \pm 2, \dots$$
 (1)

Дело в том, что АЦП позволяет считывать значение входного сигнала только в дискретные моменты времени, в то время как классическая математика обычно рассматривает непрерывное преобразование Фурье для входного сигнала. Действительно, во времена Жана-Батиста Фурье не использовалась дискретизация входного сигнала. И это первое, с чем сталкивается студент, который пытается решить подобную задачу.

Наиболее инициативные студенты начинают искать пути решения в соответствующей отечественной математической или технической литературе, например, в книге А. Б. Сергиенко [3], либо на просторах интернета, и находят их, например, на интернет-сайте [4]. На этом сайте можно найти информацию, что преобразование Фурье для цифровых отсчетов непрерывного входного сигнала называется дискретным преобразованием Фурье и записывается следующим образом:

$$X(k) = \sum_{n=0}^{N-1} x[n] \cdot \left(\cos \left(\frac{2 \cdot \pi \cdot k \cdot n}{T} \right) - i \cdot \sin \left(\frac{2 \cdot \pi \cdot k \cdot n}{T} \right) \right), \tag{2}$$

где N — количество отсчетов входного сигнала за период времени T; k — индексы входных отсчетов; n — индексы входных значений.

Из комментариев к расчетам, в частности к формуле (1), непонятно, какие значения принимает k, и что делать дальше с полученной суммой, рассчитанной по формуле (2), если мы все-таки ее каким-то образом вычислим. В книге [3] не приводится даже такая формула. Таким образом, в интернете и отечественной литературе не всегда содержится информация, которой позволяет программисту написать программу. Такая ситуация имела место и в те годы, когда автор был студентом: книг по цифровой обработке сигналов было мало, и все они были написаны так, чтобы запутать и без того не совсем осведомленных в этом вопросе читателей. В то же время в зарубежной технической литературе, например [5], приводится подробный пример, позволяющий получить алгоритм для реализации дискретного преобразования Фурье, сам алгоритм при этом отсутствует. В условиях тотального дефицита времени у студентов-выпускников колледжей это приводит к тому, что они либо отказываются участвовать в таком проекте, либо уходят в силу невозможности преодолеть его начальный этап, не реализуя свой потенциал в вопросах разработки программного обеспечения.

Для решения этой проблемы предлагается организовать совместную работу преподавателей кафедры высшей математики и выпускающей кафедры, на которой реализуется проект для подготовки методических пособий по разделам высшей математики. В этих пособиях должны содержаться материалы, включающие в себя:

- теоретические сведения из раздела высшей математики;
- примеры использования этих знаний в конкретной области науки и техники;
- примеры решения задач из конкретной области науки и техники с подробным описанием последовательности выполняемых действий;
- графы, алгоритмы и пр. способы описания вычислительного процесса, реализующего решение задачи из конкретной области науки и техники;
- примеры программной или аппаратной реализации типовых задач из конкретной области науки и техники.

В пособии должен приводиться список литературы по теме, включающий как известные труды в данной области знаний, так и последние достижения в этой области, в т.ч. публикации в периодических и непериодических изданиях в нашей стране и за рубежом.

При использовании такого подхода студент-выпускник колледжа будет знать, в чем заключается практическое применение знаний из разделов высшей математики, и как он может реализовать себя в рамках участия в проекте, который реализует его выпускающая кафедра, а также занимать призовые места на олимпиадах различного уровня. Полученные в результате работы над проектом знания могут быть использованы для подготовки материалов научных конференций. Это поможет им более глубоко и качественно освоить программы подготовки, в том числе высшую математику, и в дальнейшем стать грамотными специалистами.

В качестве примера элементов методики реализации практического применения дискретного преобразования Фурье приведен алгоритм получения входного значения X(n) в частотной области, используя формулу (2).

Величина периода T является величиной постоянной — это обеспечивается средствами синхронизации устройства, поэтому значение $2 \cdot \pi/T$ можно вычислить заранее, например, после получения массива значений входных отсчетов. Используем обозначения индексов входных отсчетов и индексов входных значений, принятые в [5], и обозначим $2 \cdot \pi/T = \tau$. Массив значений входных отсчетов во временной области, формируемый из входного непрерывного сигнала при помощи АЦП, состоит из N элементов x[k]. Индекс k меняется от 0 до (N-1). Значения x[k] формируются через строго определенные промежутки времени $T \cdot 1/N$, $T \cdot 2/N$, ... $T \cdot (N-1)/N$, T от начала отсчета. Таким образом, получим следующее выражение для вычисления входного значения X(n) в частотной области

$$X(n) = \sum_{k=0}^{N-1} x[k] \cdot (\cos(\tau \cdot k \cdot n) - i \cdot \sin(\tau \cdot k \cdot n)).$$
 (3)

Всего при использовании обычного преобразования Фурье необходимо рассчитать N значений X(n), индекс n меняется от 1 до N.

Входное значение X(n), вычисляемое по формуле (3), представляет собой сумму из N комплексных чисел X(k), каждое из которых представлено в виде

$$X(k) = \operatorname{Re}[k] - i \cdot \operatorname{Im}[k], \tag{4}$$

где k – индексы входных отсчетов.

Для представления X(n) в виде

$$X(n) = \operatorname{Re}(n) - i \cdot \operatorname{Im}(n), \tag{5}$$

где n — индексы входных значений, необходимо просуммировать Re[k] для получения Re(n) и просуммировать Im[k] для получения Im(n). Полученное комплексное число X(n) можно использовать для анализа входного сигнала в реальном времени или для других целей, например, построения для AYX и ΦYX .

Значения Re[k] и Im[k] рассчитываются по формулам

$$Re[k] = x[k] \cdot cos(\tau \cdot k \cdot n), \qquad (6)$$

$$\operatorname{Im}[k] = x[k] \cdot \sin(\tau \cdot k \cdot n). \tag{7}$$

С учетом (6) и (7) выражение (3) можно записать в виде

$$X(n) = \sum_{k=0}^{N-1} \text{Re}[k] - i \cdot \sum_{k=0}^{N-1} \text{Im}[k] = \text{Re}(n) - \text{Im}(n).$$
 (8)

Мнимая единица не используется при расчетах, поэтому для хранения в памяти значения X(n) достаточно иметь пару значений Re(n) и Im(n) — выражение (8).

Изобразим обобщенную граф-схему алгоритма получения массива входных значений (рис.1, а). В ней присутствует один главный цикл расчета входных значений X(n). Считаем, что элементы входного массива отсчетов уже введены. Граф-схема предельно проста и позволяет легко перейти от алгоритма к программе. Изобразим граф-схему алгоритма получения элемента массива входных значений X(n) (рис.1, б). В ней присутствует также один главный цикл

расчета входных значений Re[k] и Im[k] и Re(n) и Im(n). Граф-схема также предельно проста и позволяет легко перейти от алгоритма к программе.

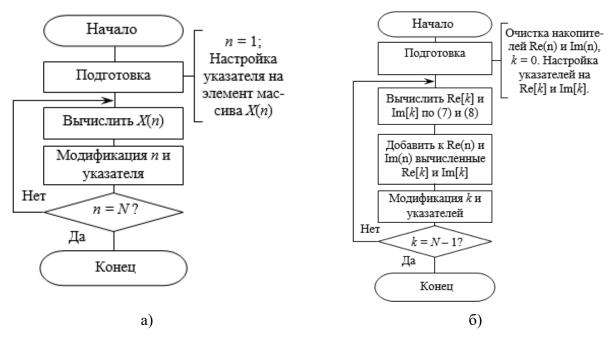


Рис. 1. Граф-схемы алгоритмов получения: а) массива входных значений; б) элемента массива входных значений

Данные алгоритмы использовались в СКБ кафедры вычислительных систем для практической реализации дискретного преобразования Фурье с использованием платформы *Arduino* [6].

Библиографический список

- 1. Гусаров А. В., Тарасова А. А. Криптоанализ полиалфавитных шифров вероятностным методом Фридмана // Актуальная математика: материалы научно-практической конференции педагогических работников и учащихся (19–20 апреля 2019 г.) / Отв. ред. А. В. Васильева; РГАТУ имени П. А. Соловьева. Рыбинск: РГАТУ имени П. А. Соловьева, 2019. Ч. 2. С. 9 11.
- 2. Письменный Д. Т. Конспект лекций по высшей математике: полный курс. 9-е изд. М.: Айрис-пресс. 2009. 608 с.: ил.
- 3. Сергиенко А. Б. Цифровая обработка сигналов. СПб.: Питер, 2002. 608 с.: ил.
- 4. Дискретное преобразование Фурье [Электронный ресурс]. URL: http://digteh.ru/dsp/DFT (дата обращения 10.09.2019).
- 5. Лайонс Р. Цифровая обработка сигналов: Второе издание / Пер. с англ. М.: ООО «Бином-Пресс, 2006. 656 с.: ил.
- 6. Arduino сайт на русском языке для начинающих мастеров. URL: https://arduinomaster.ru (дата обращения 11.09.2019).

Сведения об авторе:

Александр Вячеславович Гусаров

E-mail: alvgus@mail.ru. Spin-код: 6260-2229.

Научные интересы: автоматизация технологических процессов, прикладная математика, информационная безопасность.

УДК 51-74

Н. И. Гусарова

кандидат физико-математических наук

Е. В. Олейникова

кандидат технических наук

Рыбинский государственный авиационный технический университет имени П. А. Соловьева, Ярославская обл., г. Рыбинск, Россия

О НЕСКОЛЬКИХ ПОДХОДАХ К ПРЕПОДАВАНИЮ ВЫСШЕЙ МАТЕМАТИКИ ИНОСТРАННЫМ СТУДЕНТАМ

Аннотация. Данная статья посвящена обсуждению вопросов преподавания цикла математических дисциплин некоторым категориям иностранных студентов, обучающихся в техническом вузе. Проводится анализ основных различий в подаче материала, организации самостоятельной работы и контроля успеваемости. Предлагаются рекомендации по повышению качества обучения студентов в зависимости от их базовых знаний по математике и национальных особенностей. В работе отмечена важная роль вовлечения иностранных студентов не только в учебный процесс, но и в активную олимпиадную, научную и культурную жизнь вуза.

Ключевые слова: иностранные студенты; билингвальный подход; визуализация материала; математические дисциплины.

DOI: 10.25206/2307-5430-2019-7-121-125

Появление в российских вузах большого числа иностранных студентов стало неотъемлемой частью современного образовательного пространства. Рано или поздно каждый преподаватель сталкивается с необходимостью пересмотреть свой годами наработанный стиль преподавания в связи с необходимостью обучать студентов из других стран. Здесь приходится менять всё — и форму подачи материала, и систему контроля, и оценки знаний, и даже стиль общения с аудиторией.

При этом необходимо учитывать не только само наличие иностранцев, но и состав аудитории. В Рыбинском авиационном техническом университете