С.В. Богатова

кандидат физико-математических наук, доцент Рязанский государственный радиотехнический университет имени В.Ф. Уткина, г. Рязань, Россия

ИСПОЛЬЗОВАНИЕ ПРОГРАММЫ GEOGEBRA НА ЗАНЯТИЯХ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

Аннотация. Рассматривается проблема наглядности изучаемого материала на занятиях по математическому анализу. В статье предлагается использование «динамической среды» программы GeoGebra как один из способов разрешения методических задач. Указаны схемы построения графиков функций с ползунками, которые применяются для изучения тем «Предел функции», «Дифференцирование функций одной переменной». Рассмотрены примеры изображений плоских областей, дуг и тел в пространстве, выполненных в среде GeoGebra, для вычисления площадей, длин дуг, объемов, циркуляции и потока векторного поля в соответствующих разделах математического анализа.

Ключевые слова: программа GeoGebra; динамическая среда; график функции; математический анализ; наглядность.

DOI: 10.25206/2307-5430-2020-8-38-42

Знакомство студентов технического ВУЗа с математическим анализом начинается с изучения последовательностей, функций и их пределов. Определения основных понятий формулируются с использованием кванторов, этот стиль изложения материала не привычен большинству обучаемых, теоретический материал принципиально отличается от тем «Линейная алгебра», «Векторная алгебра» и «Аналитическая геометрия», которые студенты осваивали ранее. В этот момент особо острой становится проблема наглядности изучаемого материала, и ее актуальность сохраняется на протяжении изучения всех тем математического анализа.

Сеть Интернет предоставляет богатый выбор сервисов и онлайнпрограмм для решения многих математических задач, в частности, построения графиков функций, решения алгебраических задач, выполнения арифметических действий и так далее. Для реализации принципа наглядности изучаемого материала по математике особый интерес вызывает пакет программ GeoGebra.

GeoGebra – это образовательная математическая программа, которая объединяет в себе геометрию, алгебру и математические вычисления. Программа бесплатная, свободно-распространяемая, работает на большинстве операцион-

ных систем. Она переведена на 39 языков, в частности, и на русский язык. Для того, чтобы использовать эту программную среду на занятиях, не нужна специальная компьютерная подготовка, которой еще нет у студентовпервокурсников, достаточно элементарных навыков работы на компьютере.

У GeoGebra очень широкий спектр применения в обучении математике. Основным достоинством этой программы является ее динамичность, она позволяет создавать «живые чертежи». На занятиях по геометрии GeoGebra будет незаменимым помощником в построении кривых второго порядка, поверхностей второго порядка, а введение параметра-ползунка позволит показать студентам зависимость положения кривой или поверхности на чертеже от коэффициентов уравнения.

В отношении использования динамической среды в математическом анализе, у программы также богатые возможности: построение графиков, вычисление корней, экстремумов, интегралов и так далее. Управление осуществляется за счёт команд встроенного языка.

Уровень использования программы GeoGebra зависит от степени подготовленности студентов к восприятию теоретического материала по математическому анализу и компьютерной грамотности обучаемых, отчасти это определяется и направлением, на котором учатся студенты. Самые простые действия с программой – это построение графиков функций. Так, при изучении бесконечно малых и бесконечно больших функций, изображения функций $f(x) = \frac{1}{\sqrt{x}}$, $f(x) = \frac{x}{x^2-1}$, $f(x) = xe^{-x}$ демонстрируют стремление функции к нулю, к бесконечности и к какому-нибудь конечному значению при различных аргументах x. С помощью графиков функций разъясняется и вопрос о том, как одна функция может быть бесконечно малой при одном значении аргумента, а при другом – и бесконечно большой, и произвольной. У студентов создаются ассоциации с бесконечно малыми и бесконечно большими последовательностями, и возникает ошибка переноса теории пределов последовательностей на пределы функций.

Для создания «живого чертежа» интерфейс GeoGebra содержит переменные – ползунки, при включении которых график функции изменяется в зависимости от принимаемого значения ползунка. На рис. 1 поведение функции $f(x) = \frac{x^n + x^{n-1} + 1}{x^m + 2x^{m-1} + 3}$ определяется ползунками n и m. Это пример динамического графика функции для отработки правила вычисления предела отношения двух многочленов, где n и m - максимальные степени числителя и знаменателя соответственно.

К построению динамических графиков функций можно привлекать и студентов, так как алгоритм программы состоит лишь из нескольких командных строк (см. рис. 1).

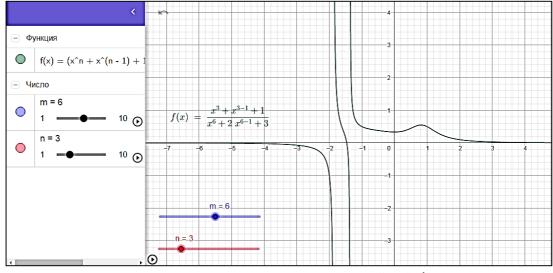


Рис. 1. График функции $f(x) = \frac{x^n + x^{n-1} + 1}{x^m + 2x^{m-1} + 3}$

В разделе «Дифференциальное исчисление функции одной переменной» использование программы GeoGebra актуально в темах «Геометрический смысл производной», «Уравнения касательной и нормали к графику функции», «Исследование и построение графиков функций».

На рис. 2 для введенной с клавиатуры функции строится график самой функции, касательная и высчитывается и показывается на чертеже угловой коэффициент k. Параметром выступает значение x_0 , при его изменении движется касательная и меняется угловой коэффициент на экране.

Программа GeoGebra становится незаменимым помощником на занятиях по математическому анализу, когда студенты приступают изучению площадей плоских кривых, длин дуг, объемов тел. Построение кривых в динамической среде предупреждает ошибки студентов по расположению графиков функций на плоскости и нахождению точек пересечения кривых – пределов интегрирования, связанные с не достаточным уровнем знаний школьного материала. На рис. З и 4 можно увидеть примеры таких чертежей.

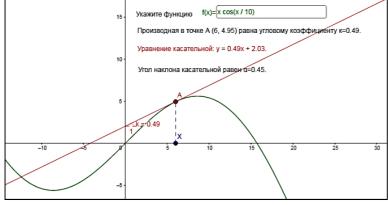


Рис. 2. График функции и её касательная

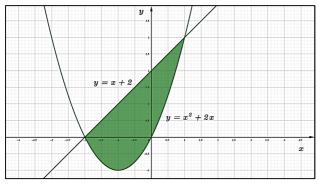


Рис. 3. Построение графиков функций в программе GeoGebra

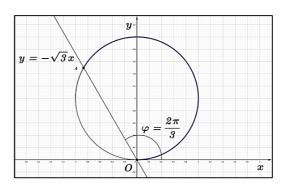


Рис. 4. Построение графиков функций в программе GeoGebra

При изучении раздела «Теория поля» чертежи, выполненые в GeoGebra, применяются для вычисления потоков и циркуляций векторных полей. Так рис. 5 демонстрирует и кривую интегрирования $\begin{cases} z^2 = x^2 + y^2, \\ z = 3, \end{cases}$ куляции, и замкнутую поверхность для определения потока векторного поля.

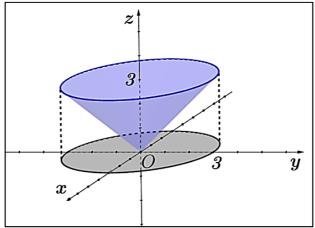


Рис. 5. Кривая интегрирования $\begin{cases} z^2 = x^2 + y^2, \\ z = 3. \end{cases}$

Наиболее подготовленным студентам, проявляющим интерес к программированию, можно предложить поучаствовать в создании более сложных чертежей. Этот процесс не только укрепляет знания студентов по математике, но и тренирует алгоритмические навыки, формирует восприятие математики, не разрывное с другими науками.

К еще одному аргументу в пользу GeoGebra 3D можно отнести её простую интеграцию с офисными приложениями – все чертежи легко могут через буфер обмена быть перенесены для дальнейшего использования как в текстовые редакторы, поддерживающие работу с изображениями, так и в графические редакторы.

Библиографический список

1. Руководство — GeoGebra Manual // GeoGebra.org. URL: https://tinyurl.com/y3zmwher (дата обращения: 19.05.2020).

Сведения об авторе:

Светлана Викторовна Богатова

Служебный почтовый адрес: 390005, Рязанская область, г. Рязань, ул. Гагарина, 59/1, РГРТУ им. В.Ф. Уткина; e-mail: bogatova_vm@mail.ru; spin-code: 3969-2432.