ПРИМЕР ИСПОЛЬЗОВАНИЯ КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, ОСВОЕННОГО В ПРОИЗВОДСТВЕ И ИМЕЮЩЕГО ХОРОШИЕ ХАРАКТЕРИСТИКИ, В ПРОЕКТЕ НОВЫХ ИЗДЕЛИЙ

А. В. Грехнев

Филиал ПАО «ОДК-Сатурн» — Омское моторостроительное конструкторское бюро», Россия, 644021, г. Омск, ул. Богдана Хмельницкого, 283

При разработке нового газотурбинного двигателя много времени и материальных средств расходуется на проектирование и испытания компрессора, который является наиболее сложной и трудоемкой сборочной единицей двигателя. Параметры компрессора определяют основные данные двигателя.

В данной статье показано возможное применение компрессоров двигателей, разработанных в отрасли, в проектах новых турбореактивных двигателей и газотурбинных генераторов сжатого воздуха. Проведен сравнительный анализ идеальных циклов турбореактивного двигателя с форсажной камерой и турбореактивного двигателя с высокотемпературной камерой сгорания. Показано преимущество схемы двигателя с высокотемпературной камерой сгорания перед схемой турбореактивного двигателя с высокотемпературной камерой сгорания перед схемой турбореактивного двигателя с форсажной камерой. Высокая скорость истечения газов из реактивного сопла двигателя с высокотемпературной камерой сгорания позволяет применять данную схему двигателя для изделий со сверхзвуковой скоростью полета.

Ключевые слова: турбореактивный двигатель, компрессор, турбина, основная камера сгорания, высокотемпературная камера сгорания, форсажная камера, реактивное сопло, идеальный цикл двигателя.

Введение

Современные турбореактивные двигатели достигли существенного повышения своего технического совершенства, однако множество исследователей ищут пути их улучшения. Наиболее перспективным является совершенствование их термодинамического цикла. Ещё в работе [1] предлагалось использовать отдельные высокотемпературные камеры сгорания, в которые подается воздух из компрессора, с выходными каналами и соплами. В настоящее время предлагается множество способов повышения термодинамической эффективности циклов турбореактивных двигателей, например в работах [2, 3] рассматривается повышение мощности турбореактивного двигателя с помощью инжекции воды во входное устройство. В статье [4] рассматривается повышение эффективности авиационных турбореактивных двигателей за счёт применения рекуператора.

В работе [5] предложен способ увеличения полезной работы и коэффициентов полезного действия, основанный на использовании внутренних циклов. В ряде работ предлагают усовершенствование двигателя применением изотермического расширения в турбине [6-8]. В исследованиях зарубежных авторов широко представлены двигатели с межступенчатой турбинной горелкой [9, 10]. Все эти способы на практике редко приводят к значительному эффекту, либо требуют применения дорогостоящих материалов и значительного усложнения конструкции двигателя. В данной работе мы увидим, как на основе имеющихся многолетних наработок получить двигатель совершенно нового типа, применив незначительные доработки имеющейся конструкции.

Сравнение идеальных циклов турбореактивного двигателя с форсажной камерой с турбореактивным двигателем с высокотемпературной камерой сгорания

Рассмотрим идеальный цикл турбореактивного двигателя с форсажной камерой (ТРДФ), представленного на рис. 1. Цикл, который показан на рис. 2, хорошо известен [1; 11—13] и представляет собой совокупность двух циклов при *p*=const: основного цикла ТРД (0-2-3-5) и форсажного цикла (4-4ф-5ф-5).

Рис. 2. Идеальный цикл двигателя ТРД Φ Fig. 2. The ideal cycle of an augmented turbojet engine

Добавление форсажного цикла к основному увеличивает полезную работу суммарного цикла:

$$L\Sigma = L_{och} + L_{\phi}$$

Из P-V диаграммы видно, что основной цикл имеет более высокую степень сжатия, чем форсажный, поэтому у него более высокий термический КПД:

$$\begin{split} \pi &= \frac{P_2}{P_0} > \pi_{\phi} = \frac{P_4}{P_0}, \\ \eta_t &= 1 - \frac{1}{\pi^{\frac{k-1}{k}}} > \eta_{t\phi} = 1 - \frac{1}{\pi^{\frac{k-1}{k}}_{\phi}} \end{split}$$

где P_2 — давление за компрессором, P_4 — давление в форсажной камере, η_t — термический КПД основного цикла, $\eta_{t\phi}$ — термический КПД форсажного цикла.

Теперь рассмотрим идеальный цикл турбореактивного двигателя с высокотемпературной камерой сгорания (ТРДВК), представленного на рис. 3. Данный цикл (рис. 4) также представляет собой совокупность двух циклов при *p*=const: основного цикла ТРД (0-2-3-5) и цикла высокотемпературной камеры сгорания (3-4вк-5вк-5).

Добавление цикла высокотемпературной камеры сгорания к основному также увеличивает полезную работу суммарного цикла, однако в большей степени, поскольку его полезная работа представляет собой площадь заштрихованной области (3-4вк-5вк-5), а термический КПД равен термическому КПД основного цикла, поскольку горение происходит при давлении P_2 .

Объект исследования

На рис. З показана схема турбореактивного двигателя с компрессором двигателя, разработанного в отрасли, соответствующая патенту RU 2 418 969 автор Грехнев А. В. [14].

Турбина и реактивное сопло двигателя выполнены с отдельным выходом газов, что обеспечивает наличие в высокотемпературной камере сгорания перед соплом давление воздуха, равное выходящему из компрессора. Размещение выхода газов из турбины в эжектируемой части потока увеличивает перепад давления на турбине и ведёт к увеличению ее энергии.

Рис. 3. Схема ТРДВК [14] с компрессором КВД двигателя, разработанного в отрасли: 1 — компрессор; 2 — турбина; 3 — камера сгорания для турбины; 4 — камера сгорания для реактивного сопла; 5 — сопло турбины; 6 — реактивное сопло Fig. 3. The turbojet engine with a high-temperature combustor configuration [14] with HPC compressor of the industrydeveloped engine: 1 — compressor; 2 — turbine; 3 — combustor; 4 — augmentor; 5 — turbine nozzle; 6 — jet pipe

Максимальное расширение газов в турбине соответствует максимальной энергии турбины. Передача этой энергии компрессору приводит к уменьшению количества воздуха, поступающего в камеру сгорания турбины и увеличению количества воздуха для высокотемпературной камеры сгорания перед реактивным соплом в сравнении с обычной схемой двигателей.

Математическая модель

Расчёт ведётся по параметрам заторможенного потока в характерных сечениях двигателя.

Определение параметров воздуха на входе в компрессор

Для заданного значения H (высота полёта) определяются давление P_H и температура T_H окружающей среды, а также скорость звука на данной высоте a. В соответствии с заданной величиной M_{Π} (число Маха полёта) и типом входного устройства выбираем величину σ_{sx} .

Полное давление на входе в компрессор определим как

Рис. 4. Идеальный цикл двигателя ТРДВК Fig. 4. The ideal cycle of a turbojet engine with a high-temperature combustor

$$P_B = P_H \cdot \left(1 + \frac{k-1}{2} \cdot M_{\Pi}^2\right)^{\frac{k}{k-1}} \cdot \sigma_{_{BX}},$$

а температура торможения

$$T_B^{\cdot} = T_H^{\cdot} \cdot \left(1 + \frac{k-1}{2} \cdot M_{\Pi}^2\right) \,.$$

При использовании газодинамических функций эти уравнения будут иметь вид

$$P_{\scriptscriptstyle B}^{\,\cdot}=rac{P_{\scriptscriptstyle H}\cdot\sigma_{\scriptscriptstyle BX}}{\pi(\lambda_{\scriptscriptstyle \Pi}\,)}$$
 is $T_{\scriptscriptstyle B}^{\,\cdot}=rac{T_{\scriptscriptstyle H}}{\tau(\lambda_{\scriptscriptstyle \Pi}\,)}$,

$$\begin{split} & \text{где} \qquad \lambda_{\Pi} = f(M_{\Pi}); \qquad \pi(\lambda_{\Pi}) = \left(1 - \frac{k-1}{k+1} \cdot \lambda_{\Pi}^2\right)^{\frac{k}{k-1}}; \qquad \tau(\lambda_{\Pi}) = \\ & = \left(1 - \frac{k-1}{k+1} \cdot \lambda_{\Pi}^2\right) [15]. \end{split}$$

Скорость полёта определим по формуле

$$V_{\Pi} = M_{\Pi} \cdot a \ .$$

Определение параметров воздуха на входе в камеру сгорания

Давление за компрессором определяем по формуле

$$P_{K}^{\star} = P_{B}^{\star} \cdot \pi_{K}^{\star} .$$

Температура воздуха за компрессором

$$T_{K}^{\cdot} = T_{B} \cdot \left(1 + \frac{\pi_{K}^{\cdot \frac{k-1}{k}} - 1}{\eta_{K}}\right).$$

Параметры газа перед турбиной

Задаём значение температуры газа T_r , давление определяем по формуле

$$P_{\Gamma}^{\cdot} = P_{K}^{\cdot} \cdot \sigma_{K.C.}$$

где $\sigma_{\!_{\!K\!C\!}}$ — потери в камере сгорания.

Относительный расход топлива определяется: для ТРДФ

$$q_{TTT} = \frac{c_p \cdot T_r^{\cdot} - c_p \cdot T_K^{\cdot}}{H_u \cdot \eta_r - c_{pn} \cdot T_r^{\cdot} + c_{pn} \cdot T_0}$$

где $c_p \cdot T_i^{\cdot}$ и $c_{pn} \cdot T_i^{\cdot}$ — теплосодержание газа и топлива в *i*-м сечении; H_u^{-} низшая удельная теплота сгорания топлива; η_{Γ}^{-} коэффициент полноты сгорания топлива в камере сгорания.

Расход воздуха реактивного сопла является частью известного расхода воздуха компрессора. Эту часть находим из условий равенства работ сжатия воздуха в компрессоре и полного расширения газов в турбине (при проходе через нее только части от общего расхода через компрессор).

 $L_{\rm K} = L_{\rm T} \cdot X$ для одного килограмма воздуха, проходящего через компрессор в секунду, где X— часть воздуха, проходящего через турбину, $X = \frac{L}{L_{\rm T}}$. Часть воздуха, проходящего через реактивное сопло Y = = 1 - X. Расход газа через реактивное сопло $G_{\rm rc} = G_{\rm gs} \cdot Y$.

Следовательно, для ТРДВК

$$q_{\scriptscriptstyle TTTB} = \frac{c_{\scriptscriptstyle p} \cdot T_{\scriptscriptstyle \Gamma}^{\cdot} - c_{\scriptscriptstyle p} \cdot T_{\scriptscriptstyle K}^{\cdot}}{H_{\scriptscriptstyle u} \cdot \eta_{\scriptscriptstyle \Gamma} - c_{\scriptscriptstyle pn} \cdot T_{\scriptscriptstyle \Gamma}^{\cdot} + c_{\scriptscriptstyle pn} \cdot T_{\scriptscriptstyle 0}} \cdot X \; . \label{eq:q_ttrb}$$

Определение параметров газа за турбиной

Задаёмся значением π_T , тогда полное давление за турбиной будет

$$P_T^{\cdot} = \frac{P_T^{\cdot}}{\pi_T^{\cdot}} \cdot$$

Определяем температуру газа за турбиной

$$T_{T}^{\cdot} = T_{T}^{\cdot} \cdot \left[1 - \left(1 - \frac{1}{\pi_{T}^{\cdot \frac{k_{T}-1}{k_{T}}}} \right) \cdot \dot{\eta_{T}} \right].$$

Определение параметров газового потока перед реактивным соплом

Температура газа перед соплом: для ТРДФ $T_{\phi} = 2000K$; для ТРДВК $T_{BK} = 2000 K$. Давление газа перед реактивным соплом: для ТРДФ $P_{\phi} = P_T \cdot \sigma_{\phi}$; для ТРДВК $P_{BK} = P_K \cdot \sigma_{BK'}$ где σ_{ϕ} и σ_{BK} — коэффициенты восстановления полного давления. Находим относительный расход топлива для ТРДФ Таблица 1. Сравнение параметров ТРДФ и ТРДВК

Table 1. Comparison of the parameters of an augmented turbojet engine and a turbojet engine with a high-temperature combustor

Схема двигателя	$q_{_{\mathrm{T}\Sigma}}$	<i>с_{с'}</i> м/с	<i>Р_{уА}</i> ′ м∕с	Р, Н	$C_{_{\mathrm{ya}'}}$ кг/Н·ч
ТРДФ	0,0524	1401	737	3979	0,256
ТРДВК	0,0326	1626	941	5081	0,125

$$q_{T\Phi} = \frac{c_p \cdot T_{\Phi}^{\cdot} - c_p \cdot T_T^{\cdot} + q_T \cdot \left(c_{pn} \cdot T_{\Phi}^{\cdot} - c_{pn} \cdot T_T^{\cdot}\right)}{H_u \cdot \eta_{\Phi} - c_{pn} \cdot T_{\Phi}^{\cdot} + c_{pn} \cdot T_0^{\cdot}},$$

$$q_{T\Phi\Sigma} = q_{TT\Phi} + q_{T\Phi}.$$

для ТРДВК

$$q_{TBB} = \frac{c_p \cdot T_{BK}^{\cdot} - c_p \cdot T_K^{\cdot}}{H_u \cdot \eta_{BK} - c_{pn} \cdot T_{BK}^{\cdot} + c_{pn} \cdot T_0^{\cdot}} \cdot Y,$$

 $q_{TBK\Sigma} = q_{TTBK} + q_{TBK}.$

Коэффициент изменения массы для ТРДФ

$$\beta_{\Gamma\Phi} = 1 + q_{T\Phi\Sigma} ,$$

для ТРДВК

$$\beta_{IBK} = 1 + q_{TBB\Sigma}.$$

Определение скорости истечения из реактивного сопла

Будем рассматривать реактивное сопло с полным расширением.

Располагаемый перепад давления на реактивном сопле равен:

для ТРДФ

$$\pi_{CP\Phi} = \frac{P_{\Phi}}{P_{H}} ,$$

для ТРДВК

$$\pi_{CPBK} = \frac{P_{BK}}{P_{H}} \cdot$$

Скорость истечения из реактивного сопла определяем с помощью газодинамических функций

$$c_c = \lambda_{cuq} \cdot \varphi_c \cdot a_{\kappa p'}$$

где λ_{cug} — идеальная приведенная скорость, которая определяется по газодинамической функции; ϕ_c — коэффициент скорости реактивного сопла; $a_{\kappa p}$ — критическая скорость звука, м/с;

$$\pi(\lambda_{cug}) = \frac{1}{\pi_{CP}} \ .$$

В зависимости от заданного значения k_{r} , критическая скорость звука $a_{\kappa p}$ определяется по уравнениям:

для ТРДФ

$$a_{\kappa p} = \sqrt{2 \cdot \frac{k_{\Gamma}}{k_{\Gamma} + 1} \cdot R_{\Gamma} T_{\varpi}^{\cdot}},$$

для ТРДВК

$$a_{\kappa p} = \sqrt{2 \cdot \frac{k_{\Gamma}}{k_{\Gamma} + 1} \cdot R_{\Gamma} T_{BK}^{\cdot}}$$

Определение удельной тяги и удельного расхода топлива

Удельную тягу в случае полного расширения определяем по формуле

$$P_{yg} = \beta_{\Gamma} \cdot c_c - V_{\Pi'}$$

а удельный расход топлива — из уравнения

$$C_{yg} = \frac{3600 \cdot q_{T\Sigma}}{P_{yg}}$$

Сравнительный анализ параметров ТРДФ и ТРДВК

Для сравнительного анализа параметров ТРДФ и ТРДВК, представленных на рис. 1 и рис. 3, выполнен расчет на режиме работы: H = 11 км, $V_{\Pi} = 2,5$ М, где H — высота полёта, V_{Π} — скорость полёта, M — число Маха.

Данные компрессора: $G_{np.} = 2,4$ кг/с, $\pi_{\kappa} = 5,4$, $\eta = 0,8$, где $G_{np.}$ — приведенный расход воздуха через компрессор, π_{κ} — степень повышения давления в компрессоре, η — адиабатический КПД компрессора.

Выполнен расчёт основных параметров ТРДФ и ТРДВК для одинаковых условий работы с одним и тем же компрессором по представленной выше математической модели.

Рис. 5. Схема ВСУ с компрессором КВД двигателя, разработанного в отрасли: 1 — компрессор; 2 — турбина; 3 — камера сгорания; 4 — выхлопное сопло турбины; 5 — канал движения сжатого воздуха потребителю Fig. 5. The auxiliary power unit configuration with HPC compressor of the industry-developed engine: 1 — compressor; 2 — turbine; 3 — combustor; 4 — jet exhaust; 5 — compressed air flow channel to the consumer

Результаты расчёта представлены в табл. 1.

Заключение

Сжигание топлива в (высокотемпературной) камере сгорания перед реактивным соплом в воздухе с давлением и температурой за компрессором позволяет максимально увеличить величину подводимой энергии за счет высокого давления и увеличенного подогрева газов. Увеличение энергии газов в реактивном сопле приводит к увеличению их скорости истечения из сопла и увеличению тяги двигателя. При этом увеличивается термический коэффициент полезного действия и уменьшается расход топлива.

Высокая скорость истечения газов из реактивного сопла способствует применению двигателя для изделий со сверхзвуковой скоростью полета.

На рис. 5 показана схема возможного генератора сжатого воздуха с компрессором двигателя Омского моторостроительного конструкторского бюро.

Компрессор содержит осевую и диагональную ступени, имеет высокий коэффициент полезного действия, большой запас устойчивой работы и малую массу.

Генератор сжатого воздуха с данным компрессором, выполненный по схеме рис. 5, способен поставлять потребителю до 1,8 кг в секунду с давлением 0,5 МПа при температуре 460 К.

Данный генератор сжатого воздуха может найти применение для самолетов, морских судов и для отряда службы чрезвычайных ситуаций.

Список источников

1. Стечкин Б. С., Казанджан П. К., Алексеев Л. П. [и др.]. Теория реактивных двигателей. Рабочий процесс и характеристики. Москва: Гос. изд-во оборонной промышленности, 1958. 534 с.

2. Никитин И. С., Магдин А. Г., Припадчев А. Д., Горбунов А. А. Повышение мощности турбореактивного двигателя с помощью охлаждения воздуха на входном устройстве // Вестник Московского авиационного института. 2021. Т. 28, № 3. С. 13 – 138. DOI: 10.34759/vst-2021-2-130-138.

3. Пат. 2645373 Российская Федерация, МПК F 02 K 3/02. Турбоэжекторный двигатель и способ его регулирования / Письменный В. Л. № 2016119202; заявл. 17.05.16; опубл. 21.02.18. Бюл. № 6.

4. Омар Х. Х., Кузьмичёв В. С., Ткаченко А. Ю. Повышение эффективности авиационных двухконтурных турбореактивных двигателей за счёт применения рекуператора // Вестник Московского авиационного института. 2020. Т. 27, № 4. С. 133-146. DOI: 10.34759/vst-2020-4-133-146.

 Письменный В. Л. Двухконтурный турбореактивный двигатель // Известия высших учебных заведений. Машиностроение. 2019. № 6. С. 50-59. DOI: 10.18698/0536-1044-2019-6-50-59.

6. Мураева М. А., Горюнов И. М., Харитонов В. Ф. Цикл ГТД с изотермическим расширением в турбине // Вестник Уфимского государственного авиационного технического университета. 2015. Т. 19, № 2. С. 111–118.

7. Мураева М. А., Горюнов И. М., Харитонов В. Ф. Термодинамические основы изотермического расширения и методика расчета турбины ГТД с изотермическим расширением // Вестник Уфимского государственного авиационного технического университета. 2015. Т. 19, № 3. С. 111–118.

8. Мураева М. А., Горюнов И. М. Совершенствование газотурбинного двигателя за счёт организации изотермического расширения в турбине // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2017. Т. 16, № 1. С. 51-61. DOI: 10.18287/2541-7533-2017-16-1-51-61.

9. Thornburg H., Sekar B., Zelina J., Greenwood R. Numerical Study of an InterTurbine Burner (ITB) Concept with Curved Radial Vane // 45th Aerospace Sciences Meeting & Exhibit. Reno, Nevada. 2007. DOI: 10.2514/6.2007-649.

10. Yin F., Rao G. A. A review of gas turbine engine with interstage turbine burner // Progress in Aerospace Sciences. 2020. Vol. 121. 100695. DOI: 10.1016/j.paerosci.2020.100695.

 Клячкин А. Л. Теория и расчёт воздушно-реактивных двигателей. Москва: Машиностроение, 1969. 512 с.

12. Теория и расчёт воздушно-реактивных двигателей / Под ред. С. М. Шляхтенко. Москва: Машиностроение, 1987. 568 с.

13. Казанджан П. К. Теория авиационных двигателей. Москва: Машиностроение, 1995. 317 с.

14. Пат. 2418969 Российская Федерация, МПК F 02 K 3/02. Турбореактивный двигатель / Грехнев А. В. № 2009107639/06; заявл. 03.03.09; опубл. 10.09.10. Бюл. № 25.

 Абрамович Г. Н. Прикладная газовая динамика. 5-е изд., перераб. и доп. Москва: Наука, 1976. 888 с.

ГРЕХНЕВ Андрей Владимирович, кандидат технических наук, ведущий инженер-конструктор филиала ПАО «ОДК-Сатурн» — ОМКБ», г. Омск. SPIN-код: 8595-0362 AuthorID: 684442 Адрес для переписки: niov@yandex.ru

Для цитирования

Грехнев А. В. Пример использования компрессора газотурбинного двигателя, освоенного в производстве и имеющего хорошие характеристики, в проекте новых изделий // Омский научный вестник. Сер. Авиационно-ракетное и энергетическое машиностроение. 2022. Т. 6, № 4. С. 53-59. DOI: 10.25206/2588-0373-2022-6-4-53-59.

Статья поступила в редакцию 29.09.2022 г. © А. В. Грехнев

AN EXAMPLE OF USE OF GAS TURBINE ENGINE COMPRESSOR, WHICH HAS BEEN MASTERED IN PRODUCTION AND HAS GOOD CHARACTERISTICS IN A NEW PRODUCT PROJECT

A. V. Grekhnev

Branch of the Public Joint Stock Company «UEC-Saturn» – Omsk Engine Design Bureau, Russia, Omsk, Bogdan Khmelnitsky, 283, 644021

The development of a new gas turbine engine requires a lot of time and money spent on the design and testing its compressor, which has been shown as the most complex and time-consuming assembly unit of the engine.

This article examines the potential application of the industry-developed engine compressors in the designs of a new turbojet engine and a gas turbine compressor. The comparative analysis of the ideal cycles of an augmented turbojet engine and a turbojet engine with a high-temperature combustor is made. The advantage of the turbojet engine with a high-temperature combustor configuration over the augmented turbojet engine configuration is shown. The high rates of jet-pipe gas velocity make a turbojet engine with a high-temperature combustor suitable for supersonic cruise products.

Keywords: turbojet engine, compressor, turbine, main combustion chamber, high temperature combustion chamber, afterburner, jet nozzle, ideal engine cycle.

References

1. Stechkin B. S., Kazandzhan P. K., Alekseev L. P. [et al.]. Teoriya reaktivnykh dvigateley. Rabochiy protsess i kharakteristiki [Theory of jet engines. Workflow and Specifications]. Moscow, 1958. 534 p. (In Russ.).

2. Nikitin I. S., Magdin A. G., Pripadchev A. D., Gorbunov A. A. Povysheniye moshchnosti turboreaktivnogo dvigatelya s pomoshch'yu okhlazhdeniya vozdukha na vkhodnom ustroystve [Turbojet engine power increasing by air-cooling at the inlet device] // Vestnik Moskovskogo aviatsionnogo instituta. *Aerospace MAI Journal.* 2021. Vol. 28, no. 3. P. 130–138. DOI: 10.34759/vst-2021-2-130-138. (In Russ.).

3. Patent 2645373 Russian Federation, IPC F 02 K 3/02. Turboezhektornyy dvigatel' i sposob ego regulirovaniya [Turbojet engine and method of its regulation] / Pis'mennyy V. L. No. 2016119202. (In Russ.).

4. Omar H. H., Kuz'michyov V. S., Tkachenko A. Y. Povyshenie effectivnosti aviatsionnykh dvukhkonturnykh turboreaktivnykh dvigateley za schyot primeneniya rekuperatora [Efficiency improving of aviation bypass turbojet engines through recuperator application] // Vestnik Moskovskogo aviatsionnogo instituta. *Aerospace MAI Journal.* 2020. Vol. 27, no. 4. P. 133–146. (In Russ.).

5. Pis'mennyy V. L. Dvukhkonturnyy turboreaktivnyy dvigatel' [Bypass turbojet engines] // Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroeniye. *BMSTU Journal of Mechanical Engineering.* 2019. No. 6. P. 50-59. DOI: 10.18698/0536-1044-2019-6-50-59. (In Russ.).

6. Muraeva M. A., Goryunov I. M., Kharitonov V. F. Tsikl GTD s izotermicheskim rasshireniem v turbine [GTE (Gas Turbine Engine) cycle with isothermal expansion in turbine] // Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. *Vestnik USATU.* 2015. Vol. 19, no. 2. P. 111–118. (In Russ.).

7. Muraeva M. A., Goryunov I. M., Kharitonov V. F. Termodinamicheskiye osnovy izotermicheskogo rasshireniya i metodika rascheta turbiny GTD s izotermicheskim rashireniem [thermodynamic foundations of isothermal expansion and methods of turbine GTE calculation with isothermal expansion] // Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. *Vestnik USATU.* 2015. Vol. 19, no. 3. P. 111–118. (In Russ.).

8. Muraeva M. A., Goryunov I. M. Sovershenstvovaniye gazoturbinnogo dvigatelya za schyot organizatsii izotermicheskogo rashireniya v turbine [Improvement of gas turbine engines due to isothermal expansion in the turbine] // Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii I mashinostroeniye. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2017. Vol. 16, no. 1. P. 51–61. DOI: 10.18287/2541-7533-2017-16-1-51-61. (In Russ.).

9. Thornburg H., Sekar B., Zelina J., Greenwood R. Numerical Study of an InterTurbine Burner (ITB) Concept with Curved Radial Vane // 45th Aerospace Sciences Meeting & Exhibit. Reno, Nevada. 2007. DOI: 10.2514/6.2007-649. (In Engl.).

10. Yin F., Rao G. A. A review of gas turbine engine with inter-stage turbine burner // Progress in Aerospace Sciences. 2020. Vol. 121. 100695. DOI: 10.1016/j.paerosci.2020.100695. (In Engl.).

11. Klyachkin A. L. Teoriya i raschyot vozdushno-reaktivnykh dvigateley [Theory and calculation of jet engines]. Moscow: Mashinostroyeniye Publ., 1969. 512 p. (In Russ.).

12. Shlyakhtenko S. M. Teoriya i raschyot vozdushnoreaktivnykh dvigateley [Theory and calculation of jet engines]. Moscow: Mashinostroyeniye Publ., 1987. 568 p. (In Russ.).

13. Kazandzhan P. K. Teoriya aviatsionnykh dvigateley [Aircraft engine theory]. Moscow: Mashinostroyeniye Publ., 1995. 317 p. (In Russ.).

14. Patent 2418969 Russian Federation, IPC F 02 K 3/02 Turboreaktivnyy dvigatel [Turbojet engine] / Grekhnev A. V. No. 2009107639/06. (In Russ.). 15. Abramovich G. N. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Moscow: Nauka Publ., 1976. 888 p. (In Russ.).

GREKHNEV Andrey Vladimirovich, Candidate of Technical Sciences, Leading Design Engineer of Branch of the Public Joint Stock Company «UEC-Saturn» — Omsk Engine Design Bureau», Omsk. SPIN-code: 8595-0362 AuthorID: 684442 Correspondence address: niov@yandex.ru

For citations

Grekhnev A. V. An example of use of gas turbine engine compressor, which has been mastered in production and has good characteristics in a new product project // Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2022. Vol. 6, no. 4. P. 53-59. DOI: 10.25206/2588-0373-2022-6-4-53-59.

Received September 29, 2022. © A. V. Grekhnev