ЭЛЕКТРОНИКА, ФОТОНИКА, ПРИБОРОСТРОЕНИЕ И СВЯЗЬ

УДК 621.317.7 DOI: 10.25206/1813-8225-2023-185-99-102 Г. Н. АНИСИМОВ¹ К. К. КИМ¹ А. А. ТКАЧУК¹ А. Ю. КУЗЬМЕНКО²

¹Петербургский государственный университет путей сообщения Императора Александра I, г. Санкт-Петербург ²Омский государственный университет путей сообщения, г. Омск

СПОСОБ НЕРАЗРУШАЮЩЕГО ИЗМЕРЕНИЯ УДАРНОГО ТОКА СИЛОВЫХ ТИРИСТОРОВ

В статье предложен новый метод неразрушающего измерения одного из важнейших предельно допустимых параметров силовых тиристоров ударного тока. Метод основан на непрерывном контроле в каждый момент времени динамической емкости, изменение характера временной зависимости которой прогнозирует разрушение полупроводниковой структуры.

Ключевые слова: силовой тиристор, динамическая емкость, ударный ток, неразрушающее измерение.

Введение. Важнейшим параметром, характеризующим надежность работы статических преобразователей при аварийных режимах, является ударный ток силовых тиристоров.

На железнодорожном транспорте тиристорные преобразователи нашли широкое применение в устройствах электроснабжения и управления в силовых цепях электровозов. Неправильная настройка тиристорных преобразователей или неисправности отдельных элементов могут привести к потерям электрической энергии или к выходу из строя дорогостоящего силового оборудования [1, 2]. Вопросы постоянного мониторинга тиристорных полупроводниковых преобразователей способно снизить энергетические и финансовые потери при эксплуатации железнодорожного транспорта [3].

Вопросы диагностирования силовых тиристоров во время эксплуатации морских энергетических установок рассмотрены в работе [4]. Авторами изучены и разработаны два метода онлайн-обнаружения в режиме реального времени короткого замыкания или обрыва тиристора в источнике питания с управляемым выпрямителем. Представлены структура двух устройств, диагностические процедуры и использование ключевых технологий, а также приведены результаты испытаний.

Особенности работы тиристорных преобразователей в аварийных режимах рассмотрены в работе [5]. Обоснована целесообразность использования высоковольтного тиристорного ключа на полностью управляемых силовых полупроводниковых приборах для практической реализации технологии безопасного проведения электродинамических испытаний силовых трансформаторов. Рассмотрена схема защиты от перенапряжений испытуемого силового трансформатора и высоковольтного тиристорного ключа при аварийном отключении тока короткого замыкания.

В статье [6] анализируются токовые характеристики короткого замыкания и обрыва цепи одиночного тиристора, а также токовые характеристики обрыва цепи линии переменного тока и предлагается новый метод оперативной диагностики неисправности выпрямительного устройства. Приведенные результаты моделирования показывают, что время идентификации неисправности составляет от 1 до 10 мс в случаях короткого замыкания тиристора, обрыва цепи тиристора и обрыва цепи сети переменного тока соответственно, а время локализации неисправностей составляют от 20 до 30 мс соответственно.

В обзорной работе [7] рассматриваются различные виды отказов, связанные с силовой электроникой в преобразователях, а также уровни устройств и новейшие методы мониторинга состояния для обнаружения этих отказов на самой ранней стадии. Силовые полупроводниковые устройства считаются наиболее чувствительной частью силовых электронных систем, и основные причины нагрузок на эти устройства могут быть вызваны атмосферными условиями, а также кратковременными большими нагрузками, которые следует учитывать при проектировании силовых электронных систем.

В большинстве существующих методов неразрушающего измерения ударного тока используются корреляционные зависимости, например [8–10], либо они не имеют достаточно строгого теоретического обоснования [11].

Теория. Разработанный новый метод неразрушающего измерения ударного тока предназначен для определения ударного тока полупроводникового прибора с достаточно высокой точностью и при полной автоматизации процесса измерения. Сущность метода заключается в особенности поведения некоторого параметра, который условно назван динамической емкостью ($C_{_{\!\!\!A}}\!)$ и определяется следующим образом:

$$C_{A} = \frac{i}{du/dt}$$
 (1)

где *i* — ток, протекающий через структуру, *du/dt* — скорость изменения напряжения на полупроводниковой структуре.

При подаче синусоидального импульса тока на испытуемый прибор длительностью 10 мс с амплитудой, заведомо превышающей амплитуду, соответствующей началу разрушения полупроводниковой структуры, в зависимости $C_{_{\rm A}}(t)$ на восходящей ветви изохронной прямой вольт-амперной характеристики наблюдается резко выраженный экстремум. Как показали многочисленные экспериментальные исследования, проведенные авторами на тиристорах типа T-25, T-50, TЧ-50, TЛ-160, T15-160, T-200, мгновенное значение тока, при котором проявляется данный экстремум во временной функции динамической емкости, с достаточной точностью (погрешность измерения не превышает 15 %) можно принять за ударный ток тиристора.

Постановка задачи. Для выяснения физической сущности критерия неразрушающего измерения ударного тока была сформулирована и решена электротепловая задача, причем учитывались резкое снижение коэффициентов инжекции эмиттерных переходов с ростом тока, электронно-дырочное рассеяние, рассеяние на фононах, рекомбинация Шокли – Рида и оже-рекомбинация, а также нагрев структуры протекающим током. Была построена одномерная симметричная модель с линейными электрофизическими параметрами эмиттерных областей с учетом выполнения условия квазинейтральности во всех слоях полупроводниковой структуры, при низком уровне инжекции в эмиттерах и высоком в базе, принималась во внимание нелинейность теплофизических параметров кремния и равномерность тепловыделения в базовой области тиристора.

В результате совместного решения уравнений непрерывности, переноса и тепловой диффузии с применением преобразований Лапласа и Кирхгофа были получены выражения для температурного поля в полупроводниковой структуре $\vartheta(x, t)$ (2), средней по толщине базы концентрации инжектированных носителей заряда $p_{\rm cp}$ (3), прямого падения напряжения на тиристоре u(4) и динамической емкости $C_{\Lambda}(t)$ (5):

$$\vartheta(x,t) = -\frac{1}{a_1} Ln \left(1 - \frac{a_1 \chi P_m}{2\sigma dA_1} \left(\frac{t}{2} - \frac{t}{4} \left(\operatorname{erfc} \frac{d-x}{2\sqrt{\chi t}} + \operatorname{erfc} \frac{d+x}{2\sqrt{\chi t}} \right) + \frac{1}{8} \sqrt{\frac{t}{\chi} \left((d-x)\operatorname{ierfc} \frac{d-x}{2\sqrt{\chi t}} + (d+x)\operatorname{ierfc} \frac{d+x}{2\sqrt{\chi t}} \right)} + \frac{1}{8} \sqrt{\frac{t}{\chi} \left((d-x)\operatorname{ierfc} \frac{d-x}{2\sqrt{\chi t}} + (d+x)\operatorname{ierfc} \frac{d+x}{2\sqrt{\chi t}} \right)} + \frac{1}{8} \sqrt{\frac{2}{\omega \chi}} (C(\omega t)\sin \omega t - S(\omega t)\cos \omega t) - \frac{1}{2\sqrt{\chi \omega}} (C(2\omega t)\cos 2\omega t + S(2\omega t)\sin 2\omega t)} \right) \right),$$
(2)

$$p_{\rm cp} = \left[\left(\frac{1}{4\tau_z^2 \eta^2} + \frac{A_2 e^{-a_2 \vartheta_{\rm cp}}}{d^2 \sigma (b_s + 1)^2 h e \eta} I_m \sin \omega t \right)^{\frac{1}{2}} - \frac{1}{2\tau_z \eta} \right]^{\frac{1}{2}}$$
(3)

100

101

$$C_{A}(t) = \frac{e\sigma}{2d} \left(\frac{\omega ctg(\omega t)}{p_{cp}} \left(\frac{A_{3}}{p_{cp}} e^{a_{3}\theta_{cp}} \left(1 + \frac{1}{a_{2}p_{cp}} \sin(\omega t)d\theta_{cp} \right) + A_{4}e^{-a_{4}\theta_{cp}} \right) + \frac{d\theta_{cp}}{dt} \left(\frac{A_{3}}{p_{cp}} e^{a_{3}\theta_{cp}} \left(a_{3} - \frac{1}{p_{cp}} \frac{dp_{cp}}{d\theta_{cp}} - a_{4}A_{4}e^{-a_{4}\theta_{cp}} \right) \right) \right) \right)$$
(5)

где A_1 , a_1 , A_2 , a_2 , A_3 , a_3 , A_4 , a_4 — постоянные экспоненциальных аппроксимаций коэффициента теплопроводности, коэффициента диффузии и величины обратной результирующей подвижности [12], $P_0 = I_m$, $P_m = r_A I_m^2$, U_0 — пороговое напряжение, r_A — динамическое сопротивление прибора, I_m — амплитуда импульса тока, ω — угловая частота тока, τ_z — время жизни носителей в базе, обусловленное рекомбинацией Шокли – Рида, η — константа оже-рекомбинацией Шокли – Рида, η — константа оже-рекомбинации, b_s — отношение подвижностей электронов и дырок, χ — коэффициент теплопроводности, erfc y — дополнительная функция ошибок, ierfc $y = \sum_y^{\infty} ierfc \xi d\xi$, C(z), S(z) — интегралы Френеля, $\vartheta_{\rm cp}$ — средний по толщине перегрев полупроводниковой структуры, $\vartheta_{\rm cp} = \frac{1}{d} \int_0^d \vartheta(x,t) dx$, h — показатель рекомбинации эмиттерных областей, 2d — толщина полупроводниковой пластины.

Эксперимент. Исследование процессов, протекающих в полупроводниковом приборе [13], проводится по схеме, представленной на рис. 1. Схема включает в свой состав следующие узлы и элементы: 1 — генератор силовых импульсов тока, 2 измерительный шунт, 3 — клеммы, 4 — высокочастотный шунт, 6 — блок выделения огибающих амплитуд высокочастотного напряжения, 7 — блок памяти, 8 — схема сравнения, 9 — блок защиты, 10 блок индикации.

Предлагаемый способ оценки величины ударного тока прибора заключается в следующем: импульс тока с выхода генератора 1 подают на полупроводниковый прибор 3, на который также подается напряжение высокой частоты с генератора 5. Если плотность упомянутого тока большая, дифференциальное сопротивление полупроводникового прибора 3 имеет емкостной характер, а на высокочастотном шунте 4 будет напряжение, величина которого пропорциональна дифференциальной емкости прибора 3. Чтобы получить напряжение, пропорциональное огибающей амплитуд, из высокочастотного напряжения, используют блок 6. Это напряжение приходит на блок памяти 7 и схему сравнения 8, на которую также подается напряжение, генерируемое самим блоком памяти 7. После того как напряжение, поступающее с выхода блока 7 превысит напряжение с выхода блока 6, на блок защиты 9 поступает сигнал с выхода схемы сравнения 8. Этот сигнал приводит к отключению генератора силовых импульсов тока 1. Блок индикации 10 осуществляет регистрацию величины силового тока в момент его отключения, соответствующей величине ударного тока.

Обсуждение результатов эксперимента. Полученные аналитические зависимости удовлетворительно согласуются с экспериментальными данными. На рис. 2 показаны зависимости, построенные для тиристора типа T-25.

Рис. 2. Вольт-амперные характеристики (а) и зависимости динамической емкости от времени (б) для тиристора T-25 при высоких плотностях тока,

где 1 — расчетные кривые, 2 — экспериментальные кривые

ОМСКИЙ НАУЧНЫЙ ВЕСТНИК № 1 (185) 2023

Детальный анализ выражения для динамической емкости (5) показал, что развитие физических процессов в полупроводниковых структурах при высоких плотностях тока во многом определяется различными нелинейными эффектами и прежде всего разогревом полупроводниковой структуры протекающим током. Экстремум на временной зависимости динамической емкости прогнозирует неустойчивость в режиме работы полупроводникового прибора. При этом наблюдается интенсивный разогрев структуры.

По данным расчета, концентрация термически генерированных носителей заряда в наименее промодулированной части базы становится сравнимой с концентрацией инжектированных носителей, что способствует формированию шнура тока и разрушению полупроводниковой структуры [14].

Полученные количественные соотношения, согласование их с результатами эксперимента, а также возникновение неустойчивости в структуре полупроводникового прибора при появлении экстремума динамической емкости достаточно убедительно аргументируют объективность разработанного метода неразрушающего измерения ударного тока.

Описанный способ измерений позволяет выявить ненадежные полупроводниковые приборы с предельно низким значением ударного тока.

Библиографический список

1. Салита Е. Ю., Ковалева Т. В., Никонов А. В. Диагностирование силовых вентилей преобразователей тяговых подстанций // Известия Транссиба. 2015. № 3 (23). С. 79-85.

2. Черемисин В. Т., Никонов А. В. Анализ потерь мощности в основном оборудовании статических тиристорных компенсаторов с учетом несинусоидальности напряжения и пути их снижения // Известия Транссиба. 2019. № 1 (37). С. 54-63.

3. Салита Е. Ю., Самолинов С. С., Налетов А. К. Использование средств постоянного технического диагностирования полупроводниковых преобразователей тяговых подстанций // Приборы и методы измерений, контроля качества и диагностики в промышленности и на транспорте: материалы V Всерос. науч.-техн. конф. с междунар. участием. Омск, 2022. С. 47 – 55.

4. Liu H. -d., Han J. -y., Shen N. -j., Lan H. Rectifier Power Thyristor Failure in Real-Time Detection Methods // 2012 Asia-Pacific Power and Energy Engineering Conference. 2012. P. 1−4. DOI: 10.1109/APPEEC.2012.6307672.

5. Kuvshinov A. A., Khrennikov A. Y., Vakhnina V. V., Chernenko A. N. A High-Voltage Thyristor Switch for the Power Transformer Testing for a Sustainability for Short-Circuit Currents // 2018 International Conference on Actual Problems of Electron Devices Engineering (APEDE). 2018. P. 47–52. DOI: 10.1109/ APEDE.2018.8542313.

6. Song G., Wang X., Tang J., Liu P. An on-line fault diagnosis method for power rectifier device based on fault current characteristic // 2016 China International Conference on Electricity Distribution (CICED). 2016. P. 1–6. DOI: 10.1109/CICED.2016.7576260.

7. Manohar S. S., Sahoo A., Subramaniam A., Panda S. K. Condition monitoring of power electronic converters in power plants — A review // 20th International Conference on Electrical Machines and Systems (ICEMS). 2017. P. 1-5. DOI: 10.1109/ICEMS.2017.8056371.

 Бардин В., Пьянзин Д., Брагин А. К вопросу о методологии оценки надежности силовых полупроводниковых приборов // Силовая электроника. 2018. Т. 6, № 75. С. 46-48.

9. Воронин К. Д., Евсеев Ю. А., Локтаев Ю. М. [и др.]. Силовые высоковольтные полупроводниковые приборы: состояние и перспективы // Электротехника. 1984. № 13. С. 19-21.

10. Ким К. К., Паленик В. И. Генератор испытательных импульсов анодного тока силовых полупроводниковых приборов // Электро. 2002. № 1. С. 40-41.

11. Ким К. К., Анисимов Г. Н., Барбарович В. Ю., Литвинов Б. Я. Метрология, стандартизация, сертификация и электроизмерительная техника. Санкт-Петербург: ПИТЕР, 2006. 367 с.

12. Григоренко В. П., Дерменжи П. Г., Кузьмин В. А., Мнацаканов Т. Т. Моделирование и автоматизация проектирования силовых полупроводниковых приборов. Москва: Энергоатомиздат, 1988. 279 с.

 Грехов И. В. Силовая полупроводниковая электроника и импульсная техника // Вестник Российской академии наук.
2008. Т. 78, № 2. С. 106-115.

14. Матюхин С. И., Ставцев А. В. Описание температурной зависимости вольтамперной характеристики силовых полупроводниковых приборов // Известия ОрелГТУ. Сер. Естественные науки. 2003. № 3-4. С. 93–99.

АНИСИМОВ Геннадий Николаевич, кандидат технических наук, доцент (Россия), доцент кафедры «Электротехника и теплоэнергетика» ПГУПС, г. Санкт-Петербург. SPIN-код: 3296-0510

AuthorID: 685147

Адрес для переписки: genn-anisimov@yandex.ru

КИМ Константин Константинович, доктор технических наук, профессор (Россия), заведующий кафедрой «Электротехника и теплоэнергетика» Петербургского государственного университета путей сообщения Императора Александра I (ПГУПС), г. Санкт-Петербург.

SPIN-код: 3278-4938

AuthorID: 690443

Адрес для переписки: kimkk@inbox.ru

ТКАЧУК Антон Андреевич, кандидат технических наук, доцент кафедры «Электротехника и теплоэнергетика» ПГУПС, г. Санкт-Петербург.

SPIN-код: 7335-2340

AuthorID: 726854

Адрес для переписки: a.a.tkachuk@mail.ru

КУЗЬМЕНКО Антон Юрьевич, кандидат технических наук, доцент кафедры «Теоретическая электротехника» Омского государственного университета путей сообщения, г. Омск.

SPIN-код: 3897-7011

AuthorID: 1013551

Адрес для переписки: KuZo17@yandex.ru

Для цитирования

Анисимов Г. Н., Ким К. К., Ткачук А. А., Кузьменко А. Ю. Способ неразрушающего измерения ударного тока силовых тиристоров // Омский научный вестник. 2023. № 1 (185). С. 99-102. DOI: 10.25206/1813-8225-2023-185-99-102.

Статья поступила в редакцию 20.12.2022 г.

© Г. Н. Анисимов, К. К. Ким, А. А. Ткачук, А. Ю. Кузьменко